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ABSTRACT 

 

Passively mode-locked lasers based on InAs/GaAs quantum dots have benefited 

from the unique properties pertaining to this material system, leading to the demonstration 

of wide mode-locking operational maps, and reconfigurable repetition rates, as well as low 

rms timing jitter. Applications of these passively mode-locked lasers include optical clock 

distribution, the generation of RF signals and high bit rate optical time division 

multiplexing. In addition to their utility for terrestrial applications, quantum dot mode-

locked lasers have the strong potential to support applications in intra-satellite data 

transmission. Owing to their compact size and low power consumption properties, coupled 

with the potential to achieve enormous aggregate bandwidth from a single transmitter, 

desirable size, weight and power (SWaP) metrics can be achieved while simultaneously 
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increasing the capacity. Supporting applications in space data transmission architectures 

requires a strong understanding of the evolution of the device characteristics over a broad 

range of operating conditions. The temperature-dependent operation of a passively mode-

locked laser typically relies on the mutual interdependence of the saturable absorber and 

amplifying gain section in a two-section device, and therefore it is not readily apparent how 

these devices will perform over broad temperature excursions.  

In this dissertation, a detailed study is presented on a series of quantum dot 

passively mode-locked lasers with variable absorber to gain-section length ratios. Inputs 

into an analytical model used for predicting regions of mode-locking stability for a given 

cavity geometry, are derived from measurements of modal gain and absorption on a multi-

section single pass emitter. The effects of temperature on the operational range of pulses 

emitted from the quantum dot ground and excited states are experimentally examined on a 

set of two-section mode-locked lasers having variable absorber lengths. A comparison is 

drawn between the experimental observations and the analytical model predictions. It is 

found that the model correctly predicts the temperature of maximum operability in each of 

the devices studied for a variety of absorber voltages. Prediction of the regimes of excited-

state operation from the quantum dots is also included and experimentally verified. The 

quality of pulse generation from pure ground-state operation, pure excited-state operation 

and a simultaneous lasing of ground and excited states is examined. For the first time, the 

unsaturated absorption is identified as a key parameter that strongly influences the range 

of biasing conditions that produce stable mode-locked pulses. This is shown to be directly 

responsible for improvement in mode-locking characteristics at elevated temperature; a 

previously observed effect that was not well understood.   
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 Finally, while the range of pulsed operation from a semiconductor mode-locked 

laser can be determined using a digital sampling oscilloscope or an auto-correlator, true 

verification of mode-locking stability requires simultaneous measurements of the temporal 

and frequency domains. In this dissertation we examine device characteristics with a 

Frequency Resolved Optical Gating (FROG) pulse measurement system. This allows for 

direct measurement of pulse asymmetry and chirp. This measurement technique is used to 

examine the evolution of device characteristics with increasing temperature, whereby the 

time bandwidth product over temperature is studied. Additionally, FROG is used to 

examine a regime of operation where non-linear double pulsing occurs (two pulses per 

round trip). It is shown for the first time that the observed double pulsing is in fact a stable 

effect, thus mode-locked operation at twice the fundamental repetition rate can be reliably 

achieved by simply electrically biasing the device in the appropriate manner. This data set 

offers valuable insight into to design of future mode-locked laser devices for maximum 

optical pulse quality over a large range of temperature and biasing conditions. Furthermore, 

the results are promising for the development of temperature-insensitive pulsed sources for 

uncooled applications such as data multiplexing and optical clocking; this is particularly 

attractive for space applications as active cooling consumes a large portion of the power 

budget.  
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Chapter 1 – Introduction 

1.1 The History of Quantum Dot Semiconductor Lasers 

          Coherent light from a semiconductor material was first demonstrated in 1962 by Hall 

et. al. [1] in a GaAs p-n junction. Shortly after, Holonyak et. al. [2], demonstrated visible 

coherent emission at a slightly shorter wavelength in a GaAs1-xPx p-n junction. Owing to 

their homostructure design, these legacy demonstrations had very poor radiative 

recombination efficiency as there was no means of confining the carriers to the active 

region. In wasn’t until the late 1960’s, when Alferov et. al. [3], and Hayashi et. al. [4] 

developed the Double Heterostructure (DH) laser, that continuous wave operation at room 

temperature was achieved in a semiconductor laser. The DH forms potential barriers on 

both sides of the p-n junction that limits the distance over which minority carriers can 

diffuse, thus improving the electrical confinement as well as optical confinement by virtue 

of the refractive index step between the center and outer layers.   

 

          In 1974, Dingle et. al. demonstrated discrete quantum levels associated with the 

confinement of carriers in a very thin AlGaAs-GaAs-AlGaAs heterostructure [5]. As the 

dimensions of the active region are reduced, the electrons are confined in one dimension 

and freely move in the other two dimensions. This causes the density of states function to 

exhibit step-like discrete transitions, compared to the continuous transitions associated 

with a bulk semiconductor; this is often called the quantum size effect. This acts to improve 

the carrier confinement thus increasing the efficiency of radiative recombination. In 1978, 

the first quantum well laser was demonstrated by Dupuis et. al [6], who used the technique 

of  metal-organic chemical vapor deposition (MOCVD) to grow quantum wells as thin as 
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20 nm. In 1979, Tsang et. al. [7] demonstrated a multiple quantum well laser grown with 

molecular-beam epitaxy (MBE). This laser had a threshold current density of 2 kA/cm2. 

By 1981, a threshold current density as low as 250 A/cm2 had been demonstrated in a 

quantum well laser [8].   

 

          In 1982, Arakawa and Sakai published the first theory of the quantum dot laser [9]. 

Therein, they proposed and analyzed a new type of laser, which they called the 

multidimensional (2D or 3D) quantum well (MD-QW), as an extension of the conventional 

quantum well lasers. In this new laser the dimensionality of the free-electron motion was 

decreased from 2D (quantum well), to 1D (quantum wire) or 0D (quantum dot) [9], as a 

means of reducing the temperature sensitivity of the threshold current density. It would be 

more than 10 years before the first quantum dot lasers were demonstrated. In 1994, Leonard 

et. al. [10] demonstrated a method to grow high density quantum dots in a semiconductor. 

The method exploited the compressive strain of MBE-deposited InGaAs on GaAs to induce 

a transition from the two-dimensional growth mode to the three-dimensional growth mode. 

Petroff et. al. [11] extended this to include InP/InGaP structures with MBE and MOCVD 

growth techniques. In August of 1994, the first quantum dot lasers where reported [12] 

with fully quantized energy levels in both bands and a strongly inhomogeneously-

broadened gain spectrum. Due to un-optimized growth conditions this first quantum dot 

laser had a threshold current density of 980 A/cm2 at room temperature. By the early 

2000’s, a group at the University of New Mexico that was developing optimized quantum 

dot growth techniques, had reduced the threshold current density to around 10 A/cm2 

[13,14] using the “dots-in-a-well” or DWELL structure. Finally, in May of 2001 the first 
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quantum dot passively mode-locked laser was demonstrated [15]. Pulse widths of 17 ps 

were observed at a repetition rate of 7.4 GHz. Since then, pulse characteristics have been 

considerably improved through optimization of growth conditions, cavity geometry and 

waveguide geometry design. Never-the-less, there is still much to learn about the relative 

impact of temperature and current excursion on the mode-locking stability, as well as the 

physical mechanisms that influence the measured pulse characteristics. 

 

1.2 Background and Motivation 

       In recent years increasing challenges in electronic charge transport due to electro-

magnetic interference effects, fundamental limitations of capacity, and increased power 

dissipation have led to the investigation of integrating photonics into the backplane of high-

speed communication network architectures [16-18]. This realization has fueled 

competition between different lasers structures aimed at determining which technology 

possesses the most superior properties to support these high-speed applications. Although 

quantum well devices are considered to be at the forefront of this discussion, structures 

based on quantum dots actually possess many superior properties over their quantum well 

counterparts. These include low linewidth enhancement factor [19], low threshold current 

densities, wide gain bandwidth, easily saturated gain and absorption, and temperature-

resistant operation [20-22]; each of these will be discussed in detail in section 1.4. As a 

result, generation of ultra-short, ultra-high repetition rate, optical pulses have been 

demonstrated in mode-locked lasers based on quantum dot materials [23,24]. Some of the 

particular advantages of these quantum dot mode-locked lasers include their compact size, 

lower power consumption, broad operational maps, and improved temperature operation 
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[25]. These attributes have attracted considerable attention in the space electronics 

community. Satellite missions are often tightly constrained by their power budget. At the 

same time mission payloads, such as hyper-spectral imagers for example, can produce 10’s 

of Gbps of uncompressed data [26]. The maturity of the quantum dot mode-locked laser 

technology to the point of integration with the data transmission architecture on a satellite 

could represent a significant reduction in the size, weight, and power (SWaP), while 

simultaneously improving the capacity. In addition, these devices have the potential to 

support many terrestrial applications from high bit rate optical time division multiplexing 

(OTDM) for use in data center network architectures [27], to the generation of tunable 

microwave signals [28]. 

 

 The directly-modulated Vertical Cavity Surface Emitting Laser (VCSEL) is 

currently capable of reliably delivering ~25 Gb/s of bandwidth [29,30], and the path toward 

~40 Gb/s is actively being pursued [30]. Alternatively, there are unique properties 

pertaining to quantum dot mode-locked lasers that could potentially allow them to 

outperform state-of-the-art VCSEL technology in terms of SWaP performance for 

equivalent capacity. One particular advantage is related to the in-plane geometry of the 

two-section lasers, which makes them favorable for integration with silicon photonics. The 

potential to achieve high capacity from a single, efficient transmitter is strongly supported 

by the prospects of combining the mode-locked laser with silicon photonics. The optical 

output from the laser can be focused into a silicon-based waveguide wherein optical time 

division multiplexing (OTDM) and wavelength division multiplexing (WDM) techniques, 

combined with efficient electro-optical modulators, can be realized to achieve large 
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aggregate bandwidths from a single efficient transmitter [27,31-33]. In Fig. 1-1 the 

OTDM/WDM hybrid architecture is captured schematically, and is shown to achieve an 

aggregate bandwidth of 200 Gb/s from a single 5 Gb/s source [31]. In this illustration, the 

optical pulsed output is divided into 10 different paths, each with a different delay. The 

delayed signals are then recombined resulting in an increase in the optical repetition rate 

by the number of original paths; 10X in this case. Furthermore, given the wide 

inhomogenousely broadened gain bandwidth, a characteristic of the quantum dot medium 

[34,35], the aggregate capacity can be increased by dividing the optical 3-dB bandwidth 

into multiple channels each having different wavelength. These channels can be modulated 

exclusive of one another. In Fig. 1-1, four-channels of wavelength selection is 

accomplished using 3 m diameter ring resonators. These act as the wavelength filters for 

the different WDM channels [31]. Overall, a final aggregate bandwidth of 200 Gb/s can be 

achieved from the 5 Gb/s source. The advantage of this approach in comparison to the 

directly modulated VCSEL approach is related to scalability. The projected critically-

damped 3-dB bandwidth of the 980 nm VCSEL is around 60 GHz [36]. By integrating the 

quantum dot mode-locked laser with silicon photonics, the limit to the bandwidth is not 

related to how fast the carrier signal can be modulated, but rather to the wavelength 

separation between adjacent WDM channels, and the repetition rate of the optical pulse 

train after OTDM. This enables un-matched capability and offers an efficient means of data 

transmission with scalable capacity to support the growing demand on bandwidth in future 

systems. 

           One of several objectives of this dissertation is to explore the regimes of operation 

where narrow pulse generation occurs, and to examine methods for improving optical pulse 
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characteristics though various biasing schemes. This study directly impacts the 

aforementioned OTDM/WDM hybrid architecture as the optical pulse Full Width Half 

Maximum (FWHM) determines the upper-limit of the pulse repetition rate that can be 

achieved through OTDM. Consequently, improvements in optical pulse quality increase 

the potential to achieve high aggregate bandwidth from the transmitter. 
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Figure 1-1. Optical time division multiplexing/wavelength division multiplexing hybrid 

architecture. This architecture enables 200 Gb/s aggregate capacity from a single efficient 

5 Gb/s source. [31]  
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1.3 Passive Mode-Locking in a Semiconductor Laser 

          Mode-locking occurs when a stable phase relationship is established between 

adjacent longitudinal cavity modes; this produces an equidistant pulse train with a period 

defined by the round trip time inside the laser cavity. The generated optical pulse train can 

be on the order of picoseconds to femtoseconds [37].  Mode-locking of adjacent transverse 

modes to create a scanning laser beam has also been explored but is not within the scope 

of this dissertation [38]. There are many different techniques for locking the phase of the 

axial cavity modes, all of which fall into one of two categories, active mode-locking or 

passive mode-locking.  

 

a. Active mode-locking  

 Active mode-locking techniques are externally driven. These methods introduce 

sinusoidal loss or phase modulations into the laser cavity at a period given by the cavity 

round trip time [37]. A common technique for active mode-locking involves placing an 

acousto-optic modulator within the cavity. By driving the modulator with the appropriate 

signal, a standing acoustic wave is generated within the modulator at a frequency that is 

equal to the cavity mode spacing. As the laser light passes through the modulator, the 

acoustic wave deflects the light and imparts side bands on the optical signal with frequency 

spacing equal to the cavity mode spacing. These sidebands, which correspond to adjacent 

cavity modes, are now phase-locked to the center mode. As this beam is reflected back into 

the cavity, it stimulates the emission of identical photons with equal phase. When the 

photons at the frequency of the sidebands enter the modulator, they incur another frequency 
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shift corresponding to the next adjacent mode. This continues until all axial cavity modes 

are locked in phase.   

 

b. Passive mode-locking in a semiconductor laser  

          In contrast to active mode-locking, passive mode-locking techniques do not require 

an external RF signal, but rather depend on the amplitude variations of the photons within 

the laser cavity to induce changes in the absorption and gain properties within the gain 

medium [37-40]. The devices used in this dissertation are passively mode-locked 

semiconductor lasers. Passive mode-locking within a semiconductor laser is achieved 

through the use on an intra-cavity element called the saturable absorber. In Fig. 1-2 the 

schematic of the elements within the cavity of the passively mode-locked laser is shown. 

The absorber and gain dynamics that lead to optical pulse generation are also shown in 

Fig.1-2 [39]. The saturable absorber applies selective loss to optical emission as a function 

of optical intensity. Passive mode-locking begins with a spontaneous emission event that 

has enough energy to match the saturation fluence of the saturable absorber. This will 

bleach the absorber and consequently the energetic light will be more efficiently amplified 

on each round trip through the cavity. The unique gain and absorption dynamics of the 

quantum dot material strongly affect the pulse characteristics of the mode-locked laser. As 

the leading edge of the optical pulse enters the absorber, the absorption quickly saturates 

and drops below the gain. However, within 60 to 300 fs the excited carriers begin to 

thermalize and this leads to partial recovery of the absorber [40]. As seen in Fig. 1-2, this 

results in a narrow net gain window wherein amplification can occur and cavity losses can 

be offset. As the absorption recovers the trailing edge of the pulse is trimmed leading to 
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the typical “fast leading edge” – “slow trailing edge” pulse shape. In chapter 5, the effects 

of varying absorber and gain recovery dynamics will be used to explain different observed 

pulse shapes.  

 

 

 

 

Figure 1-2. Passive mode-locking in semiconductor laser diode. (a) Illustration of the 

saturable absorber section (blue), gain section (red), and facet mirrors (green). (b) Gain and 

loss dynamics that occur when the high intensity pulse enters the saturable absorber. [39] 

Saturable 
Gain 

Saturable 
Absorber 

a) 

b) 
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1.4 Advantages of Quantum Dots 

In terms of favorable properties for mode-locking, quantum dots have a significant 

advantage over their quantum well counterparts. In this section the advantages of quantum 

dots are outlined and discussed. As described above the efficiency of the pulse trimming 

mechanisms in passive mode-locking are highly related to absorber and gain saturation and 

recovery times. A prerequisite requirement for the net gain window discussed in Fig. 1-2 

is that the absorption must saturate more rapidly than the gain. Accordingly, the ratio of 

the saturation energy of the gain section to that of the absorber section must be greater than 

1. This forms the commonly cited stability parameter given by [41]: 
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where Esat,g is the saturation energy of the gain section, Esat,a is the saturation energy of the 

absorber section, Ntr is the transparency carrier density,  is the optical confinement factor 

and dg/dN is the differential gain with respect to carrier density. From Eqn. (2-1) it is seen 

that low optical confinement factor, low transparency carrier density and low differential 

gain are desirable for passive mode-locking. In Fig. 1-3 the normalized modal gain as 

versus carrier density is given for quantum dot, quantum well and bulk material systems 

[42]. For a given carrier density the quantum dot material system is shown to have the 

highest values of modal gain. Additionally, owing to the finite reduced density of states in 

the quantum dot per unit area, the modal gain strongly saturates with increasing carrier 

density. This leads to low values of differential gain (dg/dN) as the maximum gain value 
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of the quantum dot medium is approached. These factors considered, quantum dots are 

clearly prime candidates for stable pulse generation according to Eqn. (2-1). There are a 

number of other attributes related to the quantum dot material system that make it highly 

for generation of optical pulses. Those were briefly mentioned in section 1.2 but are 

restated in more detail below. 

 

 

 

 

 

Figure 1-3. Normalized modal gain versus carrier density, in bulk (red), quantum well 

(blue) and quantum dot (green) material systems [42]. 
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a. Fast gain and absorber dynamics  

As mentioned to above, owing to the reduced density of states, quantum dots have 

lower saturation fluence than quantum well devices. Additionally, ultra fast absorber 

recovery times have been demonstrated [43,44]. Absorber recovery times from 62 ps, with 

0 V applied to the absorber, to 700 fs, with -10V applied to the absorber have been 

measured [44]. From Fig. 1-2, it was shown that the leading edge of the pulse is strongly 

dependent on the absorption saturation time, while the absorber recovery time is the 

mechanism by which the trailing edge of the pulse is trimmed. It then follows that the ultra 

fast gain and absorber dynamics associated with quantum dots are very advantageous for 

narrow pulse generation and ultimately mode-locking stability.  

 

b. Low (or negative) linewidth enhancement factor  

The linewidth of a laser results from fluctuations in the phase of the optical field 

arising from spontaneous emission events that alter the phase and intensity of the laser 

emission [45]. One of the desirable characteristics associated with quantum dots is the 

observation of low linewidth enhancement factors. The linewidth enhancement factor, 

often called the -parameter, depends on the ratio of the change in the real part of the 

refractive index with respect to carrier density (dn/dN) to the differential gain (dg/dN) of 

the material =-4/(dn/dN)(dg/dN)-1 [45]. In theory, the refractive index will not change 

with increasing carrier density at the peak of a symmetric gain profile with energy [46,47]. 

This follows from the Kramers-Kronig relation. In a quantum dot medium, strong 

symmetry of the gain spectrum results from the -like density of states, thus the refractive 

index change is small with increasing carrier density. Furthermore, the differential gain in 
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a quantum dot is very high prior to gain saturation. These factors considered, near zero -

parameters have been demonstrated in quantum dot lasers [48]. These values are 

significantly less than those measured in quantum well devices. This is an important feature 

as high values of  can lead to a number of undesirable effects such as self-focusing and 

chirp under modulation [48]. There have been also been studies that showed negative -

parameter [49] is achievable. This stimulates the idea of intra-cavity chirp compensation, 

which can potential improve time domain characteristics of the mode-locked laser. This 

will be discussed in the future work section of chapter 6.    

 

c. Low threshold current density  

Ultra-low threshold current density arises from the small physical volume of the 

active region coupled with the reduced density of states resulting from 3 dimensions of 

carrier confinement. Because of the tight confinement of carriers, the probability of 

radiative recombination is high. Additionally, there are fewer carriers required for 

population inversion. These factors act to significantly reduce the threshold current density. 

Operation at lower values of forward injection current offers advantages such as lower 

spontaneous emission noise and lower power consumption.  

  

d. Potential for Temperature Insensitive Operation 

Finally, the temperature insensitive properties of quantum dots make them very 

attractive candidates for uses in satellite optical interconnect applications where wide 

temperatures excursions are present. The temperature sensitivity of a semiconductor laser 

is often expressed by its characteristic temperature, To. The exponential of the ratio T/To 
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describes the empirically observed temperature dependence of the threshold current of the 

laser. Accordingly, low values of To indicate there will be strong variation in the threshold 

current over temperature. The temperature insensitive properties of quantum dots result 

from discrete nature of the density of states. To values as high as 650 K have been reported 

in high power 1.3 m quantum dot lasers [50].   

 

1.5 Dissertation Objectives and Organizational Structure  

         Supporting terrestrial and space applications alike, it is expected that the quantum dot 

mode-locked lasers will need to operate reliably over a variety of environmental conditions. 

The objective of this dissertation is to develop analytical and experimental capabilities in 

order to gain a clearer understanding of the physical mechanisms that influence the 

efficiency of stable pulse generation in a quantum dot mode-locked laser, and to examine 

biasing techniques that can be utilized to optimize the optical pulsed output. This ultimately 

supports the transition of this technology, either for terrestrial applications, or applications 

within a satellite. In particular, we focus on understanding and improving the time-domain 

pulse characteristics of two-section quantum-dot passively mode-locked lasers operating 

over broad temperature excursions and biasing conditions.  

 

          In chapter 2 (Devices and Fabrication), the details of the quantum dot mode-locked 

lasers used throughout the dissertation are given. Therein, the cavity geometry, ridge 

waveguide geometry and the epitaxial structure of the devices are presented and discussed 

in detail. In chapter 3 (Analytical Model of the Mode-Locking Stability), an analytical 

model is discussed and shown to enable accurate prediction of the regions where mode-
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locking stability is expected to occur as a function of the device cavity geometry. The 

strength of this approach lies in the fact that all the parameters appearing in the analytic 

expressions can be measured; namely, the static gain and loss characteristics. The 

segmented contact method [51] is utilized to measure the loss and gain spectra over a wide 

temperature range up to 120 oC and over a wide range of gain-section current and saturable 

absorber section reverse voltages. This comes as a prerequisite to examining the 

experimental operational range of the two-section lasers. The theoretical range of mode-

locked operation is given for each of the devices used in this dissertation across the full 

range of examined temperatures. In chapter 4 (Experimental Study of the Operational 

Range), the construction of the experimental operational maps is given. These maps 

represent the range biasing conditions where the laser exhibits narrow pulse generation as 

measured by a high speed digital sampling oscilloscope. The maps are generated for the 

set of devices having different absorber to gain length ratios, and compared to the 

predictions of the analytical model discussed in chapter 3. It is shown that excellent 

agreement between experimental results and analytical theory is achieved. In chapter 5 

(The Evolution of Device Performance with Increasing Temperature and Current), the 

influence of temperature-dependent unsaturated absorption on the optical pulse width is 

discussed Additionally, in this chapter the stability of the mode-locked lasers is examined 

with frequency resolved optical gating (FROG) pulse measurements. This method is used 

to study the evolution of the pulse time-bandwidth product for increasing temperature, as 

well as the double pulsing effect; a common non-linearity that can occur within these 

semiconductor mode-locked lasers. Lastly, in chapter 5 the waveguide geometry and its 

relative impact on the effective current density and ultimately the range of pulsed operation 
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is discussed. Chapter 6 (Conclusion and Future Work), is the final chapter of this 

dissertation. Here the key results from this study are restated and the future work is 

presented. This includes the development of the experimental methodology for the three-

section mode-locked laser wherein differential pumping of two electrically isolated gain 

sections can be used to improve the time-domain characteristics of the mode-locked laser. 
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Chapter 2 – Devices and Fabrication 

          In this chapter, the details of the quantum dot mode-locked lasers used throughout 

this dissertation are given. Sections 2.1 and 2.2 of this chapter describe the active layer 

composition and cavity geometry of the two-section mode-locked lasers and the multi-

section single pass emitter, respectively.  In chapter 3, the multi-section single pass emitter 

will be used to gather modal gain and absorption characteristics which serve as the primary 

inputs into an  analytical model used for predicting operational capability for a given cavity 

geometry. In chapter 4, the two-section mode-locked lasers will be used for development 

of the experimental operational maps, and in chapter 5 they will be characterized with 

Frequency Resolved Optical Gating (FROG), which is a sensitive measurement of mode-

locked stability. In the final section of this chapter, the impact of the effective current 

density on the threshold current density is calculated and experimentally examined. 

    

2.1 Two-Section QD Mode-Locked Laser 

          The laser structures presented here were grown on a GaAs substrate by molecular 

beam epitaxy (MBE). The epitaxial cross-section for the growth of the laser structure is 

shown in Fig. 2-1. A complete description of the refractive index in each layer is given in 

Table 1. The active region for the devices used in these experiments is composed of 6-

stacks of InAs quantum dots embedded in InGaAs quantum wells, separated by GaAs 

barriers, otherwise known as the Dots-in-a-Well (DWELL) laser structure [1]. The upper 

and lower cladding layers consists of a p-Al0.2Ga0.8As and n-Al0.2Ga0.8As, respectively, 

with a “low-high” doping profile as shown in Fig. 2-1. This low-high design is very 

important for minimizing internal loss due to free-carrier absorption that occurs when the 
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optical mode interacts with a heavy doped cladding [2]. The relatively small refractive 

index step at the core-clad boundary of the waveguide was chosen to expand the optical 

mode in the transverse (growth) direction, which then lowers the photon density at a given 

optical output power. The total cladding thickness is 2.5 m not including the intrinsic 

GaAs and graded index layers. Standard multi-section laser processing was used to 

fabricate the ridge waveguide and the anode/cathode metal contacts. There are two series 

of devices that have been studied in this dissertation, ZLG788A and ZLG788B, each 

having a different ridge waveguide width. A Scanning Electron-beam Microscope (SEM) 

was used to image the cross-section of the ZLG788A processed devices. These images are 

shown in Figs. 2-2 through 2-3, where it is seen that the width of the waveguide is 3.46 m 

at the base of the ridge and the etch depth is 2.0 m. The ZLG788B series of devices 

contains a 5-m ridge width. It is important to distinguish between the different ridge 

widths because this directly affects the effective current density as seen by the active layer 

which in turn impacts the threshold current density as well as the operational range where 

narrow pulse generation occurs. From Fig. 2-2 it is noted that the ridge waveguide etch is 

not completely vertical such that the width is 2.94 m at the top of the ridge compared to 

3.46 m at the base. This is a consequence of the inductive plasma etching process. 

Although this is a directional etching process, with increasing time the edges of the mask 

begin to degrade resulting in a small percentage of lateral etching. Never-the-less the 

resulting ridge angle of 82.7o is good in comparison to wet etching processes which 

typically result in ridge angles closer to 54o [3]. This will manifest as an increase in series 

resistance within the injection current circuit. Each device has an intra-cavity saturable 

absorber that is electrically isolated from the gain section via proton implantation. In Fig. 
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2-4 the isolation gap between the absorber and the gain section has been imaged. Electrical 

DC resistance has been measured to be approximately 8 M.  

 

The two section mode-locked lasers from the ZLG788A and ZLG788B series have 

an 8.0-mm cavity length and achieve a steady-state pulsed operation at a nominal 

fundamental repetition rate of 5 GHz corresponding to a 200 ps pulse interval. The length 

of the intra-cavity absorber (La) is varied among the different devices. In this dissertation, 

devices having La = 0.8-mm, 1.0-mm, 1.2-mm, 1.4-mm, and 1.6-mm are primarily 

examined. The resulting absorber to gain-section length ratios are 0.11, 0.14, 0.18, 0.21, 

and 0.25 respectively. In these two-section lasers, the facets are HR(95%)/AR(5%) coated 

with the absorber adjacent to the HR-coated facet. This facilitates the colliding pulse 

mechanism [4], wherein two counter propagating pulses interact within the saturable 

absorber to produce a mutual saturation of the absorber that narrows the optical pulse. 
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Figure 2-1. ZLG788 series epitaxial layer structure. Thickness, composition and doping 

concentration are shown. The devices have a 6-stack dots-in-a-well active region with 20% 

AlGaAs upper and lower cladding layers.  
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Table 1: ZLG788 - Layer thickness, description and refractive index at 1255 nm 

Thickness Description Index @ 1255 nm 

60 nm cap layer 3.45546 

40 nm graded p-AlGaAs layer 3.35624-3.45546 

1500 nm upper clad, heavily p-

doped 

3.35624 

1000 nm upper clad, lightly p-

doped 

3.35624 

37 nm graded i-AlGaAs layer 3.45546-3.35624 

20 nm  upper part of waveguide 3.45546 

16 nm, 5X barriers 3.45546 

7.6 nm, 6X DWELL layers 3.6 

20 nm lower part of waveguide 3.45546 

37 nm graded i-AlGaAs layer 3.35624-3.45546 

1000 nm lower clad, lightly n-

doped 

3.35624 

1500 nm lower clad, heavily n-

doped 

3.35624 

40 nm graded n-AlGaAs layer 3.45546-3.35624 

300 nm n-type buffer   

1.5 m substrate ` 
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Figure 2-2. SEM cross-section of ZLG788A series device. The waveguide width is 

determined to be w = 3.46 m at the base of the ridge, and w = 2.94m at the top of the 

ridge.  
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Figure 2-3. SEM cross-section of ZLG788A series device. The etch depth of the ridge 

waveguide is determined to be 2.00 m. The thickness of the upper cladding layer plus the 

core waveguide is 2.75m.  The DWELL active region is contained within the core. 
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Figure 2-4. SEM image of ZLG788A series device. Isolation gap between the saturable 

absorber and gain section shown. A proton implantation at this gap creates approximately 

8 M electrical resistance. The internal loss in this short, 10-µm long section is estimated 

at 100 cm-1. 
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As a final step, the processed lasers are cleaved and mounted onto an AlN carrier, 

where the absorber and gain contacts of the laser are wire bonded to the larger gold contacts 

on the AlN carrier. This not only adds mechanical stability but also improves the thermal 

conductivity as well. An image of the laser mounted onto the AlN carrier is shown in Fig. 

2-5. For robustness, this device-on-carrier could then be placed into an industry standards 

14-pin butterfly package, which incorporates active thermal sensing and control within a 

compact form factor. This package further increases mechanical stability and reduces 

environmental noise [5]. In this mode, coupling of the laser emission into a single-mode 

polarization-maintaining fiber is accomplished internally using two lenses to circularize 

the highly elliptical beam of the laser diode. On the other hand, the devices used for the 

experiments presented in this study are actually not mounted in the butterfly. In this case 

the gold contact pads on the AlN carrier are directly probed and laser emission is captured 

with a lens tipped fiber, or the optical head described in chapter 4. Although less 

convenient, this arrangement gives us far more flexibility to modify the electrical pumping 

as seen in Chapter 6 of this dissertation. 

 

The contrast between the upper and lower cladding layers is noted in Figs. 2-2 and 

2-3; however, the active region in not readily apparent. The measurement in Fig. 2-3 is 

actually the thickness of the upper cladding layers and the core waveguide combined. The 

active region is contained within the core region. Accordingly, in Fig. 2-6 a higher contrast 

image of the device is shown and reveals that the core layer thickness is 225 nm, and the 

lower cladding layers combine for a thickness is 2.5 m. From Fig. 2-1, it is seen that the 

targeted core thickness was 7.6 nm x 6 DWELL layers, plus 16 nm x 5 barrier layers. This 
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is equal to 125.6 nm, thus it is concluded that the contrast between the core region, the 

intrinsic GaAs layers and graded index layers cannot be discerned. These included, the 

targeted thickness equals 239.6 nm, which is within the measurement error of the SEM. 

Furthermore, taking 225 nm from 2.75 m, the upper cladding layers have a measured 

thickness of 2.525 m. This is critical information for calculations of effective current 

density which will be discussed in section 2.3 

 

The relatively low index step waveguide design, n = 0.244, decreases the photon 

density, which is desirable for reducing the deleterious effect of optical non-linearities at a 

given power level.  This is an important consideration for pulsed lasers with peak power 

such as the quantum dot mode-locked laser.  However, the side effect of this approach is 

to reduce the optical confinement factor of the active region, and, therefore, increase the 

threshold current density of the laser.  This tradeoff has been studied extensively in the 

context of high power laser diodes built in the AlGaAs/GaAs waveguide system for 

wavelengths such as 980 nm [6,7]. Thus, the 20% Al composition used in the cladding 

layers of the devices examined here is rather typical.  The optical confinement factor of the 

6-layer DWELL active region is calculated to be 7.4% at 1255 nm using the thicknesses 

and refractive indices for MBE growth run ZLG788 shown in Fig. 2-1 and Table 1. 

 

2.2 Multi-section single pass emitter 

          The analytical model discussed in chapter 3 requires measurements of modal 

gain and absorption. The method for extracting gain and absorption characteristics 

requires measurements of amplified spontaneous emission under different pump 
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lengths [8,9]. In order to perform these measurements a multi-section single pass 

emitter has been processed on the ZLG788A series devices. This test structure contains 

16 electrically-isolated sections of 500 m length each.  Not all of these sections are 

actually used in the gain/absorption measurement.  The extra ones are reverse biased 

to eliminate unwanted back reflections. Like the two-section devices, the multi-section 

emitter is mounted onto an AlN carrier for increased mechanical rigidity and thermal 

conductivity. An illustration of the multi-section device is given in Fig. 2-7 bellow. 

Also shown in Fig. 2-7 is the setup for the segmented contact method used for 

measuring the device modal gain and absorption characteristics. Three separate current 

supplies are used to bias the device at different pump lengths. The resulting 

spontaneous emission is captured by the optical head and measured with an optical 

spectrum analyzer. Measurements of I1, I2 and I3 are converted into the modal gain 

profile using the formulism given in [8]. The absorption profile is determined in a 

similar manner, but with the second section reverse biased rather than driven with a 

forward current. The resulting spectra from these measurements will be presented in 

chapter 3.  
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Figure 2-5. (Top) Two-section quantum dot passively mode-locked laser mounted on AlN 

carrier. (bottom) Laser mounted into a 14 pin butterfly package containing collimating lens, 

isolator and thermal electrical cooler for convenient operation within a small form factor. 
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Figure 2-6 High contrast SEM cross-section of the ZLG788A series device. The thickness 

of the core waveguide region is found to be t = 225 nm, and the lower cladding thickness 

is found to be 2.5 m. The thickness of the un-etched cladding layer on the side of the ridge 

is d = 525 nm. 

 

 

 

 

525 nm 
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Figure 2-7. Structure of the 16 section device, and the setup for the segmented contact 

measurement. Spontaneous emission when the device is biased at different pump lengths 

is coupled into the optical head and measured by an optical spectrum analyzer.   
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2.3 Effective Current Density 

          The results presented in this section explore the effective current density injected 

into the active region and its impact on the threshold current density of the mode-locked 

laser. It will be further shown in chapter 5 that this has a notable impact on the operational 

range of the laser and should be strongly considered when designing the laser ridge width 

and height. It has been shown that the lateral current spreading out of a ridge waveguide 

has a significant effect on the threshold current density and the modal gain [10]. This 

current spreading depends on the ridge geometry and the thickness of the un-etched 

conductive cladding layer remaining beside the ridge. In the previous studies an expression 

for the effective current density (Jeff) in the active region of the device was given by [11]:  
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In this expression Jtotal is the applied injection current at the device, w is the width of the 

laser ridge and ls is the current spreading length which is expressed as [11]: 
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where kB is the Boltzmann constant, T  is the temperature, q is the elementary charge, is 

the cladding layer resistivity, and d is thickness of the un-etched cladding layer. By solving 

the system of equations in Eqns. (2-1) and (2-2), a previously unpublished expression for 

Jeff can be found:   
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where  is given by: 
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From the cross-sectional SEM images of the ZLG788A series devices shown in Figs. 2-2, 

2-3 and 2-6, the laser ridge width, w, is found to be approximately 3.5 m. The etch depth 

is 2.0 m and the depth of the upper cladding layers is 2.525 m, thus the thickness of the 

un-etched cladding layer, d, is 525 nm. Taking the hole mobility in the cladding layer to be 

239.8 cm2/V∙s [12], the resistivity at room temperature is calculated to be approximately 

0.25 cm. It is found that for a Jtot = 1 kA/cm2, the effective current density in the active 

layer is Jeff = 437 A/cm2. In Fig. 2-8 the effective current density is plotted as a function of 

applied current density for the 3.5 m (ZLG788A) and 5.0 m devices (ZLG788B) using 

Eqns. (2-3) and (2-4). For the purposes of this plot it was assumed that the ridge height and 

etch depth of ZLG788B were the same as that of ZLG788A. This is not necessarily the 

case; however, the purpose of this discussion is more qualitative. From Fig. 2-8 it is seen 

that for the same applied current density, the effective current density is greater in the 

device having a 5 m ridge width. This is an indication that the efficiency of current 

injection is higher in the wider ridge devices. Given that the ridge heights are assumed to 
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be the same (un-etched cladding layer is the same), it follows that the carrier recombination 

at the sidewalls is identical. Accordingly the device having a narrower ridge waveguide 

must have a higher percentage of lateral current spreading into the cladding layers. This 

should result in reduced threshold current density conditions for the ZLG788B series of 

devices.  

 

To study the aforementioned effect experimentally, threshold current densities were 

measured for the two devices having identical cavity geometry (La=1.2-mm, Lg=6.8-mm), 

but different ridge widths of 3.5 m and 5.0m.  Measurements were taken at 20 oC (blue 

lines), 40 oC (green lines) and 60 oC (red lines) across the voltage range of 0 to -7 V. In 

Fig. 2-9, the resulting threshold measurements are plotted. The solid lines represent the 3.5 

m device (ZLG788A AV06), the dashed lines are for the 5.0 m device (ZLG788B 

AH09). It is found that in all instances, the threshold current density is greater in the 3.5 

m device. This is consistent with the findings of Fig. 2-8, where it was shown that the 

device having a narrower w had a lower effective current density. While the precise ridge 

height has not been determined, it is clear that the efficiency of current injection in the 

wider ridge devices is indeed better. Accordingly, the majority of the experiments 

presented in this dissertation have been performed on the 5 m ridge width devices. 
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Figure 2-8. Effective current density (Jeff) according to Eqns. (2-3) and (2-4) for quantum 

dot ridge waveguide lasers having a 3.5-m ridge width (red line), and a 5-m ridge width 

(blue line). Resulting Jeff are shown in each case for an applied current density of Jtot=1 

kA/cm2.
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Figure 2-9.  Measured threshold current density (Jth) over temperature and voltage for a 

set of two quantum dot lasers. One having a 3.5 m ridge width (solid lines) and the other 

a 5.0 m ridge width (dashed lines). Threshold is shown for the temperatures of 20 oC (blue 

lines), 40 oC (green lines) and 60 oC (red lines). 
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Chapter 3 – Analytical Model of the Mode-Locking Stability 

          In contrast to numerical modeling efforts currently being developed to predict 

temporal domain optical field profiles from a quantum dot mode-locked laser [1-3], this 

chapter discusses an analytical model that enables prediction of the regions of mode-

locking stability from a quantum dot mode-locked laser for a given cavity geometry. The 

cavity geometry in a two-section mode-locked laser is the absorber length to gain length 

ratio. In section 3.1, the determination of modal gain and absorption characteristics are 

presented. The analytical model discussed in this chapter has the unique advantage that all 

parameters which appear in the analytical expressions can be derived from modal gain and 

absorption profiles measured directly on the device of interest. In section 3.2, the set of 

analytical expressions that form the upper and lower bounds of the model are introduced. 

This directly represents the range of device geometries that are expected to achieve mode-

locking threshold for a particular temperature. The resulting modeled stability maps are 

presented in section 3.3 for a wide range of temperatures and saturable absorber reverse 

voltages. Finally, in section 3.4 the predictive capabilities of the analytical model are 

presented. Namely, the predicted operational range is examined when model parameters 

are adjusted to represent different processing characteristics.  

        

3.1 Determination of Modal Gain and Absorption 

          The analytical model presented in the next section is a useful tool for predicting the 

regions of mode-locking stability for a given device geometry. In this section, the approach 

for extracting model parameters from the experimental data is outlined. This model 

requires inputs derived from static gain and loss characteristics measured directly on the 
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device. In order to perform a full analysis of the QD material used in this study, gain spectra 

were measured at TE cooler temperatures from 20 to 120 oC over a range of current 

densities from 229 to 1257 A/cm2. Total loss spectra were measured for absorber voltages 

from 0 to -7 V and the same temperature range. Gain and absorption measurements were 

conducted on device series 788A multi-section single pass emitter described in chapter 2 

using a segmented contact method. In this technique, the gain profile is determined by 

measuring the emitted amplified spontaneous emission with different pump lengths. The 

absorption profile is determined in a similar fashion but requires the addition of a variable 

reverse bias. Details of these measurements and the relevant equations can be found in [4, 

5].     

 

a. Modal Gain Profile 

          Firstly, the modal gain results are presented. For clarity, the modal gain spectra for 

selected temperatures between 20 and 120 °C are shown in Fig. 3-1 at a constant current 

density of 857 A/cm2 (15 mA applied to a 500-µm x 3.5-m section). The measured modal 

gain data in its completeness is presented in Appendix A. At 20°C, three primary optical 

transitions are evident in Fig. 3-1 corresponding to the ground state (GS) transition at 

=1222.2 nm, the first excited state (ES) transition at=1158.8 nm, and the second ES 

transition at =1112.2 nm. It is noted that the second ES is not clearly evident for 

temperatures greater than 20 oC. The measured spectra shown in Fig. 3-1 were measured 

at the same current density and only the temperature was varied. From these measurements, 

the observed spectral variation of the GS gain peak between 20 oC and 60 oC is 0.64  nm/oC 

whereas between 60 oC to 100 oC it is 0.39 nm/ oC. The observed red shifting of the GS 
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gain peak is expected to be a combination of both band gap shrinkage (BGS) and the 

temperature-dependent shift of the bandgap [6].  For the devices reported here, it is likely 

that 60 oC represents an activation energy associated with a non-radiative recombination 

process [7]. As a consequence, fewer carriers would be available for radiative 

recombination and the contribution to the red shift due to BGS would be reduced [8]. 

Inspection of the magnitude of the modal gain over temperature reveals that the GS gain 

degrades from 10.2 cm-1 to 4.4 cm-1, while the ES gain degrades more significantly from 

14.1 cm-1 to 4.1 cm-1. This has been attributed to a reduced radiative efficiency for higher 

energy transitions at elevated temperature [9]. 
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Figure 3-1. Measured modal gain spectra for a constant current density of 857 A/cm2 at 

20, 40, 60, 80, 100, 110 and 120 oC. The wavelength of emission from the ground state is 

observed to red shift at an average rate of 0.64 nm/oC between 20-60 oC, and 0.39 nm/oC 

between 60–110 oC 
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  For completeness, the peak modal gain values and their matching emission 

wavelengths in the ground state are summarized from 20 to 80 oC in Table 1. For the 

temperatures of 100 to 120 oC, the ES gain peak wavelengths and modal gain values are 

summarized in Table 2. This selection was based on examination of optical spectra which 

revealed that for the case of a grounded saturable absorber, the lasing wavelength 

transitioned from GS to ES between 93 and 98 oC for the device having La=0.8-mm, and 

between 80 and 85 oC for La=1.0-mm. The devices having longer absorber lengths failed 

to produce mode-locked pulses from the ES when the absorber was grounded. The 

complete set of optical spectrum data will be presented in chapter 4. 

 

From the modal gain data presented in Fig. 3-1 and Tables 1 and 2, the first of the 

required model inputs can be derived; namely, the modal gain and differential modal gain 

with respect to current density.  For a given temperature and current density, J, it is assumed 

that the MLL emits at the wavelength corresponding to the peak gain. Consequently, the 

quantum dot peak modal gain behavior in Fig. 3-1 can be modeled using the following 

empirical expression [10]: 

 



go (J ) gmax 1 exp
Jtr  J

b
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

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




i    (3-1) 

 

that has the corresponding differential gain of: 
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

dgo
dJ


gmax

b
exp

J tr J

b









                    (3-2) 

 

 

in which go(J) is the modal gain with respect to current density, gmax is the measured 

maximum net gain, Jtr is the transparency current density, i is the internal loss, and b is a 

fitting parameter which carries units of A/cm2. The differential gain evaluated at   go=0cm-

1 (J = Jtr) represents a conservative approximation for the differential absorption and has 

the convenient result based on the fitting parameters [11]: 

 

b

g

dJ

dg

dJ

da

og

oo max

0




                     

       (3-3) 

 

In Fig 3-2a, the measured modal gain at the GS gain peak as a function of current 

density over the temperature range 20 to 80 oC is shown. This represents the range of 

temperatures wherein lasing occurred from the GS when the saturable absorber was 

grounded. For the remaining temperatures, the measured modal gain at the ES gain peak is 

shown in Fig 3-2b. The symbols in Figs. 3-2a and 3-2b are the experimental values from 

Tables 1 and 2 respectively, and the solid lines are the fits according to Eqn. (3-1). From 

this, the modal gain, differential modal gain, and differential absorption are determined.    
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Table 2: Ground State Modal Gain at Peak Gain Wavelength 

J A/cm2 T=20 oC T=40 oC T=60 oC T=80 oC 

Gpeak nm go cm-1 Gpeak nm go cm-1 Gpeak nm go cm-1 Gpeak nm go cm-1 

1257 1225.6 11.0 1236.9 8.7 1245.5 7.5   

1143 1224.2 10.9 1235.6 8.5 1246.2 7.2 1251.4 7.1 

857 1222.2 10.2 1234.7 8.4 1247.9 6.8 1255.3 5.8 

685 1221.9 9.9 1232.2 7.8 1244.0 6.1 1252.2 5.3 

571 1221.6 9.3 1231.9 7.3 1245.6 6.2 1251.2 4.9 

457 1221.5 8.9 1231.8 6.9 1247.2 4.7 1249.8 4.5 

400 1221.2 7.7 1232.1 6.2 1245.4 4.6 1253.8 3.3 

314 1220.9 6.8 1232.4 4.4 1244.7 3.8 1255.6 2.5 

229 1220.2 6.0 1233.5 3.9     

 

Table 3: Excited State Modal Gain at Peak Gain Wavelength 

J A/cm2 T=100 oC T=110 oC T=120 oC 

Gpeak nm go cm-1 Gpeak nm go cm-1 Gpeak nm go cm-1 

1257   1204.7 7.4   

1143 1199.4 7.7 1206.3 6.8 1214.5 7.2 

857 1200.1 5.3 1208.8 4.2 1215.8 5.2 

685 1208.4 4.1 1214.3 3.3 1216.6 4.1 

571 1211.9 3.2 1219.4 2 1219.6 3.1 

457 1215.8 2.8 1219.2 0.6 1225.4 2.9 

400 1215.2 2.2 1217.5 -1.2 1228.5 -0.3 

314 1219.1 -0.5     
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Figure 3-2. a) Measured modal gain peak (symbols) of the GS as a function of current 

density over the temperature range from 20 to 80 oC. b) Measured modal gain peak of the 

ES as a function of current density from 100 to 120 oC.  Solid lines are the resulting fits 

from Eqn. (3-1).   

a) 

b) 
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b. Modal Absorption Characteristics 

As presented in the next section, the unsaturated absorption and internal loss are 

the only remaining model parameters after the above analysis of the modal gain spectra. 

The internal loss can be derived from the net gain spectra; however, it is most evident by 

inspection of the absorption characteristics shown in Fig. 3-3 for the case of 0 V applied to 

the saturable absorber. For completeness, the absorption characteristics for the remaining 

voltages studied are shown in Appendix B. In our case the internal loss was found to be an 

average of 2.4 cm-1 over the full range of temperatures examined. From Fig. 3-3 the average 

differential wavelength shift, T, in the absorption peaks is 0.44 nm/oC between 20 and 

60 oC, and it reduces to 0.42 nm/oC between 60 and 110 oC. Recall that the overall average 

wavelength shift in the modal gain peak was greater than the above-mentioned values for 

the absorption peak; however, it is noted that this shift reduces more significantly in the 

gain spectra than in the loss spectra such that for higher temperatures T|gain peak < 

T|abs peak. Similar trends have been previously reported [10,12]. This turns out to be a 

critical detail in understanding the temperature of maximum stability, which will be 

discussed in more detail in chapter 6.  For convenience, in Table 3 a complete list of the 

absorption peak wavelengths and corresponding maximum absorption values is given in 

the ground state at each temperature for applied voltages from 0 to -7 V. 

 

c. Unsaturated Absorption 

          The next step is to determine the values of unsaturated absorption, a0, for any 

particular temperature and reverse bias voltage on the absorber. This is accomplished by 

projecting the range of gain peak wavelengths (complied in Tables 1 and 2 for the full 
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range of current densities) onto the total loss spectra presented in Fig 3-3. The bands in 

Fig. 3-3 represent the range of measured gain peak wavelengths. The unsaturated 

absorption is found by taking the average absorption value over the region and then 

subtracting the internal loss. This process is repeated for each temperature and reverse 

voltage. Unsaturated absorptions values for each temperature and voltage combinations are 

recorded in Table 4. It is found that the unsaturated absorption reaches a minimum at T=60 

oC. This is a consequence of the variance in the differential wavelength shift of the gain 

and absorption spectra, which results in the gain peak walking off of the absorption peak. 

For the case of T=80 oC, the unsaturated absorption is slightly higher than that of T=60 oC 

because the shift in the gain peak is significantly reduced for higher temperatures. The 

values of ao increase dramatically at 100 oC and higher, when the MLL is lasing from the 

ES. Intuitively this would seem to reduce the likelihood of achieving laser threshold; 

however, the increase in ao is compensated by an increase in modal gain, go, at the first ES.  
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Figure 3-3. Measured total loss spectra for absorber reverse bias of 0 V from T=20 to 80 

oC in (a) and from 100 to 120 °C in (b). The shaded bands represent the range of absorber 

losses possible given the gain peak positions as a function of current density found in 

Tables 1 and 2. 

a) 

b) 
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Table 4: Absorption Peak Wavelengths and Max Absorption 

Temp 

(oC) 

V=0 V V=1 V V=2 V T=3 V 

apeak nm amax cm-1 apeak nm amax cm-1 apeak nm amax cm-1 apeak nm amax cm-1 

20 1203.5 26.0 1205.7 25.7 1208.7 25.1 1210.2 24.2 

40 1211.8 29.8 1213.5 28.5 1215.5 27.3 1218.2 26.4 

60 1221.2 29.2 1222.7 27.3 1225.2 26.2 1228.4 24.7 

80 1229.2 31.0 1231.4 28.8 1233.5 27.5 1235.4 26.4 

100 1239.4 30.2 1242.1 29.1 1243.1 28.3 1244.3 27.1 

110 1242.1 29.6 1244.3 28.0 1245.5 27.3 1248.8 26.8 

120 1246.9 28.5 1248.6 27.3 1250.1 25.9 1253.1 25.5 

 V=4 V V=5 V V=6 V T=7 V 

 apeak nm amax cm-1 apeak nm amax cm-1 apeak nm amax cm-1 apeak nm amax cm-1 

20 1211.9 23.4 1212.9 22.5 1214.6 22.5 1216.0 21.8 

40 1220.2 25.4 1222.4 24.6 1224.3 23.6 1226.1 22.5 

60 1229.6 23.6 1231.8 22.9 1233.7 22.0 1234.9 20.9 

80 1237.4 25.6 1239.6 24.6 1241.9 23.7 1243.5 23.0 

100 1246.1 26.5 1248.4 25.9 1250.3 24.7 1251.5 23.9 

110 1249.7 25.7 1251.8 24.4 1254.2 23.5 1254.3 22.2 

120 1255.5 24.5 1257.2 23.5 1259.7 22.9 1262.2 22.3 
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Table 5: Unsaturated Absorption Values ao (cm-1) Assuming Average Internal Loss of 

i=2.4 cm-1 

 

Voltage (V) 20oC 40oC 60oC 80oC 100oC ES 110oC ES 120oC ES 

0 
12.9 12.5 10.7 12.5 23.2 23.6 22.0 

1 
14.7 14.1 12.0 13.7 23.8 23.6 21.2 

2 
16.0 15.3 13.3 15.1 23.7 24.5 20.2 

3 
16.8 16.8 14.2 16.4 23.7 24.8 20.2 

4 
17.6 17.6 15.0 17.4 24.7 25.3 20.1 

5 
17.9 18.3 16.2 18.3 26.0 25.2 20.3 

6 
18.6 18.6 16.6 18.5 25.9 26.0 20.9 

7 
18.4 18.5 16.4 18.6 26.7 26.1 21.3 
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3.2 Development of Analytical Expression from Gain and Loss Characteristics 

          The analytical expression developed in this section have been constructed to predict 

the regions of pulse stability for a given device layout and to ultimately investigate the path 

toward achieving broad temperature operation of QD MLLs. The current representation of 

the expressions leverages previous work by Lin et. al. [11] and Crowley et. al. [10]. In the 

previous section, the method for deriving all of the input parameters that appear in this 

model from static gain and loss measurements was outlined. The model is based on the 

idea that the onset of passive mode-locking in a semiconductor lasers is bound by two 

functions. The first is derived from a net-gain modulation phasor approach, describing the 

onset of passive mode-locking as a sinusoidal variation in output intensity [13,14]. The 

expressions derived in that study assumed that the gain and loss were uniformly distributed 

in the cavity. Subsequent work by Lin et. al. [11], expanded this approach to account for 

discrete, electrically-isolated gain and saturable absorber sections. For convenience, the 

resulting modified equation is stated here as well: 
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
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2

go(J)
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(3-4)  

 

Using the empirical formula from Eqn. (3-1), the mode-lock condition expressed above 

can be further reduced to the following alternative form: 
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The second equation which bounds the regions of passive mode-locking is the threshold 

condition for lasing and can be expressed in terms of the length of the absorber section 

over the length of the gain section as follows [10]:  
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              (3-6) 

 

here m is mirror loss described by the classic equation [15]: 
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where R1 and R2 are the reflection coefficients at the laser facets, and L is the cavity length. 

The mirror loss was calculated based on HR(95%)/AR(5%) coated facets and an 8.0-mm 

cavity and found to be 1.9 cm-1. Using the modal gain and loss data presented in Tables 1-

4, all of the parameters that appear in Eqns. (3-5) and (3-6) can be accurately determined. 

In the following section the resulting modeled stability maps are presented. 
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3.3 Modeled Mode-Locked Stability Maps 

          Here we present the anticipated operational range of the ZLG788 series two-section 

quantum dot passively mode-locked lasers based on gain and loss profiles measured on the 

ZLG788A multi-section single pass emitter. This section includes a treatment of the ground 

state and excited state mode-locking regimes. These maps are referenced again in chapter 

5 in which an in-depth study of the physical parameters that most strongly impact pulse 

stability are discussed. Following the methodology of section 3.2, the stability map in Fig. 

3-4 was generated for the case of 0 V applied to the saturable absorber, over the full range 

of examined temperatures. The characteristic function describing the threshold conditions 

for lasing shown in Eqn. (3-6) sets the upper-bound in Fig. 3-4 while Eqn. (3-5) determines 

the lower bound. Devices having absorber to gain length ratios that fall within the bounds 

of the curves in Fig. 3-4 are predicted to produce mode-locked pulses for a given 

temperature. This represents the operable range of our stability maps. The dotted horizontal 

lines then depict the absorber to gain section length ratios of the quantum dot mode-locked 

lasers used in this study; previously presented in chapter 2. 

 

           It is generally noted that the path toward achieving better temperature performance 

in an MLL involves moving to a shorter absorber length. As a result, the device having 

La/Lg=0.11 is anticipated to have the best temperature performance. The analytical model 

predicts that in all cases, with the exception of 20 oC and La=0.8-mm, the devices studied 

are in a region that is limited by the threshold condition rather than the mode-locking 

stability condition in Eqn. (3-5). The physical implications of this are discussed in chapter 

5. Stability maps have also been constructed for the remaining voltages (-1 through -7 V); 
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these maps are presented in Appendix C. The dashed boundaries in Fig. 3-4 represent 

regions where mode-locking from the first ES was observed. In these regions, Eqn. (3-1) 

was fitted to the ES net gain peak, and the values of gmax and a0 reflect the maximum gain 

and unsaturated absorption in the ES, respectively. A direct comparison of the model 

predictions at the GS and the ES for higher temperatures is shown in Fig 3-5. For 100 oC 

and higher, the model indicates that the devices used in this study fail to meet the threshold 

condition in the GS. Conversely, for high current densities, lasing from the excited state is 

expected up to 110 oC for the device having La=0.8-mm, and up to 100 oC for the device 

having La=1.0-mm. One can see that the horizontal dotted lines in Fig. 3-5, representing 

the absorber to gain length ratios of these devices, intersect the ES maps only.  
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Figure 3-4. Mode-locking stability map for 0 V applied reverse bias as determined from 

Eqns. (3-5) and (3-6) using the measured GS gain and absorption data, solid plots and 

measured ES gain and absorption data, dashed plots. The horizantal dashed lines represent 

the absorber to gain length ratios of the devices used in this dissertation.  
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Figure 3-5. Comparison of model predictions from the ground state (Solid lines) and the 

excited state (dashed lines) for 100 to 120 oC with grounded saturable absorber. The 

horizantal dashed lines represent the absorber to gain length ratios of the devices used  in 

this dissertation.  
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          In the final section of chapter 3 we examine methods for optimization of the 

operational range of a mode-locked laser for different device characteristics. The predictive 

capability of the model is an area of considerable interest. In this section the utility of the 

model as a tool to influence the growth and processing of future mode-locked laser designs 

is investigated.  

 

3.4 Predictive Capabilities for Next Generation Designs 

          We now turn our focus to examining the potential implications of our model and 

consider which parameters could be adjusted to move us into a regime of shorter pulse Full 

Width Half Maximum (FWHM) or more stable operation. In Figs. 3-4 and 3-5, the resulting 

curves from Eqns. (3-5) and (3-6) are cut off for current density values below the 

intersection point of the lower and upper bound conditions. In Fig. 3-6 the full range of 

Eqns. (3-5) and (3-6) is shown for the case of T=60 oC. Modification of the model 

parameters and the resulting effects on the range of mode-locked operation is now 

discussed. Firstly, we note that the high current range can be significantly improved with 

an increase in maximum gain (gmax – blue dashed line); this could be accomplished, for 

instance, with p-type doping of the dots [16]. Secondly, from Fig. 3-6 it is evident that the 

onset of mode-locking can be shifted to lower current density with a reduction in 

transparency current density (Jtr – red dashed line); in contrast to the approach for 

increasing gmax, reduction in Jtr is accomplished with n-type doping [16]. Finally, we find 

that the lower bound curve, described by Eqn. (3-5), comes to a peak at lower currents. 

This peak is found to increase in magnitude with decreasing unsaturated absorption (ao). 

Note that from Table 4 that the minimum value of ao was observed at T=60 oC. The positive 
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implications of this will be discussed in greater detail in chapter 5. As it relates to this 

discussion, we find that the lower bound peak maximizes at 60 oC when ao is lowest. 

Optimization of these parameters presents a great opportunity for maximizing the 

operational range in accordance with the modeled stability maps and potentially reveals 

the path toward achieving more stable mode-locking for a given temperature.  

 

All other things being equal, a device with a longer absorber will produce a higher 

quality pulse train as a result of more interaction length, which allows for increased pulse 

trimming. Accordingly, it is desirable to use a device with a larger absorber to gain length 

ratio provided that the threshold condition is still met. Additionally, the best quality pulses 

occur at lower current densities; typically close to threshold to avoid non-linear effects 

such as Self-Phase-Modulation (SPM) [17]. Therefore, it follows that the optimum 

operating condition occurs at the intersection of the upper and lower bound curves; Eqns. 

(3-5) and (3-6), which we referred to as the point of maximum stability. By modifying our 

parameters in accordance with the results from Fig. 3-6, it is possible to shift the point of 

maximum stability closer to the peak of the lower bound curve. By operating in a regime 

wherein this peak is maximized, we increase the potential performance of the device by 

virtue of the fact that the point of maximum stability occurs for a larger absorber to gain 

length ratio.  

 

The analytical theory presented in this chapter adds critical insight not only into the 

proper design of two section mode-locked lasers, but into the design of future devices as 

well.  In chapter 4, results are presented from experiments designed to examine the current 
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and voltage biasing regimes that produce stable mode-locking over a wide range of 

temperatures. In particular, verification of the model predictions for the temperature of 

maximum operation and the regions of ES vs. GS mode-locking is sought. 

 

 

 

Figure 3-6. Mode-lock stability map for V=0 V applied to the absorber at T= 20 oC. Dashed 

line represent the theoretical results after altering the max gain (blue), the transparency 

current density (red), and the unsaturated absorption (green). 
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Chapter 4 – Experimental Study of the Operational Range  

 With careful consideration of the analytical theory presented in chapter 3, this 

chapter deals with development of a set of experiments designed to verify the model 

predictions and examine device characteristics over a broad range of operating 

temperatures. In section 4.1, state-of-the-art the experimental setup and methodology is 

presented. Experiments have been designed to examine temporal, optical and frequency 

domains. In section 4.2, the construction of the experimental operational maps is presented, 

and the key features of the maps are identified. This section directly contrasts the 

experimental observations with the analytical model predictions. Subsequently, in sections 

4.3 – 4.5 the optical spectrum, electrical spectrum and time domain characteristics are 

presented across a wide range of biasing conditions and temperature variation. Key features 

such as optical spectrum transitions from ground-state to excited-state, the evolution of the 

time-bandwidth product with temperature and non-linear effects such as pulse splitting are 

presented and discussed in detail. 

 

4.1 Experimental Setup 

          The experiments presented in this chapter were conducted on the ZLG788B series 

of two-section quantum dot passively mode-locked lasers. As described in chapter 2 the 

lasers have been individually mounted onto AlN carriers for improved thermal conductivity 

and increased mechanical stability. They are placed on a vacuum stage with a large thermal 

mass. The temperature of the laser is controlled by a thermo-electric (TE) cooler. An ILX 

3811 current source applies current to the anode contact above the ridge waveguide. A 

reverse bias from 0 to -7 V is applied across the saturable absorber, this is used to alter 
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absorber recover times which can be reduced from 100’s fs with 0V to 10’s  fs with -7V 

[1] . Light is coupled into a polarization maintaining single mode fiber using a set of 

collimating lenses, and an isolator is incorporated to minimize feedback into the laser 

cavity. A 50 GHz HP 8565E electrical spectrum analyzer enables the characterization of 

the pulse train in the frequency domain. A high-speed photodiode is used for the optical-

to-electrical conversion. The optical domain is characterized with an Ando AQ6317B 

optical spectrum analyzer. The MLL output is also captured in the temporal domain with a 

140 GHz Tektronix DSA 8200 sampling oscilloscope. In contrast to autocorrelation, which 

suffers from loss of detail regarding pulse shape [2], the high speed sampling scope 

resolves details of pulse asymmetry; however, it is limited to a minimum pulse width of ~7 

ps. This is due to the fact that the measured pulse width from the oscilloscope is actually 

the convolution of the optical pulse, and the sampling gate, which has a width of 7.1 ps. To 

address this issue, a state-of-the-art Frequency Resolved Optical Gating (FROG) system 

has been developed for characterization of pulse shape and chirp from a quantum dot mode-

locked laser [2,3]. Pulse characteristics captured using this technique will be introduced in 

chapter 5. For the purpose of constructing the operational maps in section 4.2, device 

characteristics were effectively captured with the high speed oscilloscope. It is noted that 

the optical pulse and the sampling gate are assumed to be Gaussian in nature. As such, the 

actual pulse width is estimated using the deconvolution formula [4]:  

 

4.5022  mact                            (4-1) 

 



 

74 

where m is the measured pulse width according to the oscilloscope, and act is the actual 

pulse width after the deconvolution. It is also noted that due to the high level of asymmetry 

in some optical pulses, the approximation in Eqn. (4-1) can induce some error; however, 

the operational maps presented in section 4.2 are for stable pulse trains that are well 

approximated by a Gaussian profile. A visual schematic of the experimental setup 

described in this section is presented in Fig. 4-1. The blue dashed lines in the schematic 

represent alternative configurations of the polarization maintaining (PM) fiber. The orange 

dashed line represents an alternative configuration of the SMA cable. Although 

measurements from the auto-correlator and the FROG are not presented until chapter 5, 

they have been included in Fig. 4-1 for completeness.  
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Figure 4-1. Schematic drawing of the experimental setup used to characterize two-section 

quantum dot (QD) passively mode-locked lasers (MLL). The Dashed lines represent 

alternative configurations of the cabling. 
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4.2 Experimental Mapping of Device Operational Range 

          To examine the accuracy of our predictive model, a detailed characterization of the 

pulse train output in the temporal domain is performed. At each temperature, and for 

incremental voltages from 0 to -7 V, the laser injection current was swept from below laser 

threshold, up to 500 mA– equal to a current density of 1.428 kA/cm2. This current was 

selected as a maximum to avoid potential damage to the device. The regions of fundamental 

mode-locking (5 GHz) were recorded where the measured pulse width (m) was less than 

20 ps, equal to an actual pulse width (a) of ~18.7 ps according to Eqn. (4-1). In addition 

to examination of the pulsed output in the temporal domain, the frequency and optical 

domains were characterized at the key biasing conditions that bounded the contours of the 

operational maps. This allowed determination of the electronic state from which the device 

was lasing, the 3-dB bandwidth of the optical spectrum, and provided added insight into 

the quality of mode-locking. This data will be presented in detail in sections 4.3 and 4.4.  

 

In Fig. 4-2 the resulting operational map for the device having a saturable absorber 

length of 0.8-mm (788B AH3) is shown. The regions within the contours represent the 

current and voltage combinations that produce a<18.7 ps. The laser continued to pulse 

outside these contours but with longer pulse durations. In many cases, unusual pulse 

dynamics such as pulse splitting [3], and harmonic mode locking [5] were observed outside 

the contours of Fig. 4-2. A more detailed investigation into these regimes will be reported 

in chapter 5.   
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Figure 4-2. Contour maps depicting the regions of fundamental mode-locking (5 GHz)  

where the measured FWHM of the optical pulse was less than 18.7 ps for a two-section 

mode-locked laser having saturable absorber length, La=0.8-mm. The plotted symbols 

show the threshold current at each temperature and reverse voltage. At 0V applied to the 

saturable absorber, the threshold currents were 40, 55, 78, 139, 242 and 314 mA at 20, 40, 

60, 80, 100 and 110oC, respectively. 
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Comparing experimental results in Fig. 4-2 to the analytical predictions shown in 

Fig. 3-4 (presented in completeness in Appendix C), excellent agreement is found, clearly 

demonstrating the capability to accurately predict temperature of maximum operation for 

a wide range of absorber voltages. As an example, from examination of Fig. 3-4, the device 

having La=0.8-mm was expected to operate up to 110 oC when the saturable absorber was 

grounded. This prediction was positively validated by the experiments conducted on the 

788B AH03 device; shown in Fig. 4-2. This is currently the highest known temperature 

operation from a monolithic quantum dot mode-locked laser [6]. Previous work has shown 

operation of quantum well mode-locked lasers up to 90 oC [7], and quantum dot mode-

locked lasers up to 80 oC [8].  

 

The symbols in Fig. 4-2 represent the measured threshold current values for each 

combination of temperature and absorber bias. One can observe that from 20 to 60 oC these 

hug the contours of the measured onset of mode-locking, whereas at higher temperatures 

they begin to deviate from the contours and a significant injection current above threshold 

is required to generate pulses. The current above threshold where pulses were observed at 

110 oC was 1.5xIth which equates to ~185 mA above threshold. This trend is related to the 

transition from ground-state (GS) to excited-state (ES) operation. It is found that the onset 

of pulsing from the GS occurs near threshold, while the onset of pulsing from the ES occurs 

at injection current values that are well above threshold. Examination of the optical 

spectrum, introduced in the next section, verifies that between 80 oC and 100 cC, the laser 

emission wavelength switched to the ES. This result undoubtedly confirms our analytical 
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model predictions shown in Fig. 3-4 regarding the transition point from GS to ES mode-

locking.  

 

In Figs. 4-3 through 4-6, the experimental operational maps are presented for the 

remaining devices; La=1.0-mm, La=1.2-mm, La=1.4-mm and La=1.6-mm, respectively. 

Relating these maps back to the predictions for the 0V case presented in Fig. 3-4, it is 

clearly seen that the maximum operational temperature is correctly predicted for all 

absorber lengths. Furthermore, in comparing the maximum operating temperature across 

all voltages examined, to the complete set of operational maps presented in Appendix C, 

excellent agreement is observed. This serves as strong evidence that the analytical theory 

presented in chapter 3 has a high level of physical merit. A final noted consequence of the 

device containing a La=0.8-mm absorber length is that the optimum operating temperature 

occurs around 60 oC. Improvement in device characteristics at higher temperatures has 

been previously noted [9,10], but was not fully understood. In this dissertation, the physical 

mechanisms that result in improved operation at higher temperatures have been discovered 

to be strongly associated with temperature dependent tuning of the gain and absorption. 

This will be discussed in greater detail in chapter 5. In the remaining sections of chapter 4, 

the optical, electrical and temporal characteristics of mode-locked laser are given, and the 

key features therein are discussed.   
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Figure 4-3. Contour maps depicting the regions of fundamental mode-locking (5 GHz)  

where the measured FWHM of the optical pulse was less than 18.7 ps for a two-section 

mode-locked laser having satruable absorber length, La=1.0-mm. The plotted symbols 

show the threshold current at each temperature and reverse voltage.  
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Figure 4-4. Contour maps depicting the regions of fundamental mode-locking (5 GHz)  

where the measured FWHM of the optical pulse was less than 18.7 ps for a two-section 

mode-locked laser having satruable absorber length, La=1.2-mm. The plotted symbols 

show the threshold current at each temperature and reverse voltage.  
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Figure 4-5. Contour maps depicting the regions of fundamental mode-locking (5 GHz)  

where the measured FWHM of the optical pulse was less than 18.7 ps for a two-section 

mode-locked laser having satruable absorber length, La=1.4-mm. The plotted symbols 

show the threshold current at each temperature and reverse voltage.  
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Figure 4-6. Contour maps depicting the regions of fundamental mode-locking (5 GHz)  

where the measured FWHM of the optical pulse was less than 18.7 ps for a two-section 

mode-locked laser having satruable absorber length, La=1.6-mm. The plotted symbols 

show the threshold current at each temperature and reverse voltage.  
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4.3 Optical Spectrum Characteristics 

          In this section the optical spectrum characteristics of the two section quantum dot 

mode locked lasers are explored which includes a study of the temperature dependence of 

the optical spectra as well as the transition from GS to ES operation. The majority of the 

spectra discussed in this section are from the short absorber device (788B AH03, La=0.8-

mm) given that this device has demonstrated the best temperature performance. The 

corresponding temperature dependent optical spectra for the remaining devices are shown 

in Appendix D.  

 

In Fig. 4-7, the temperature-dependent optical spectra are presented for the case 

where the saturable absorber is grounded (0V). Each of these spectra corresponds to the 

shortest measured pulse at 0 V. The forward injection currents for these spectra are 55, 70, 

80, 145, 350 and 450 mA at 20, 40, 60, 80, 90, 100 and 110 oC, respectively. The device 

maintains ground state operation from 20-92 oC (solid lines in Fig. 4-7), exhibits dual mode 

[11] operation from 93-98 oC and then switches to excited state (ES) operation above 98 

oC (dashed lines in Fig. 4-7). The dual mode lasing can be bypassed by increasing the 

reverse bias to ~1 V on the saturable absorber. This forces the device into single wavelength 

operation from the ES. In section 4.5 we will examine the quality of the optical pulses 

emitted from different lasing states including dual mode operation. The mode-locked 

spectra cover a wavelength span from 1217 to 1265 nm over the complete range of 

temperatures. The observed ranges of wavelengths are compatible with Si-Ge alloy 

detectors; the short wavelength extreme (~1220 nm) represents the shortest practical 

wavelength for Si-based waveguides since it avoids excessive absorption [12].  
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Upon further observation of Fig. 4-7, it is found that the 3-dB bandwidth of the 

optical spectrum is narrowing as the device is taken to higher temperature. The 

corresponding 3-dB bandwidths are 377.7, 452.1, 246.8, 198.6, 1031, 774.7 GHz at 20, 40, 

60, 80, 100 and 110 oC respectively. It is not immediately evident if this is beneficial or 

not, given that the Fourier limited pulse width goes as the inverse of the optical bandwidth, 

however, reduced optical bandwidth does appear to coincide with expanded range of 

operating conditions that produce narrow pulses according to Fig. 4-2, and could be an 

indication of reduced broadening from SPM [13]. The underlying cause for optimization 

at elevated temperatures is associated with temperature-dependent tuning of the gain and 

absorption values at the lasing wavelength, which is a topic of chapter 5. The voltage 

dependence of the optical spectra at a constant temperature and injection current density is 

shown in Fig. 4-8. It is found that the application of the reverse bias tends to shift the peak 

emission from the laser to a shorter wavelength. In contrast to the absorption peak which, 

as determined from the modal absorption profile, is red-shifting with increasing reverse 

voltage. The voltage dependence of the GS to ES transition is also evident from Fig. 4-2 

and 4-3 at 80 oC, and in Fig. 4-5 at 70 oC wherein the pulses are observed from the GS at 

0 V but transition to ES under application of reverse bias.  
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Figure 4-7. Measured optical spectra over temperature corresponding to the shortest 

measured pulses for the absorber grounded in all cases. Solid lines show ground state 

operation, dashed lines represent excited state operation (100 oC: Dashed-dotted, 110 oC: 

dashed).  The spectra were measured at 55, 70, 80, 145, 350 and 450 mA at 20, 40, 60, 80, 

90, 100 and 110 oC, respectively. The corresponding 3-dB bandwidths were: 1.9 nm, 2.13 

nm, 1.28 nm, 1.05 nm, 5.07 nm and 3.84 nm.  
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Figure 4-8. Measured optical spectra at T=20 oC for an injection current of 55 mA. The 

Absorber reverse voltage is varied from 0 to -7 V resulting in a shift in the laser peak 

emission to shorter wavelengths. The -7 V case (Purple solid line) exhibits dual mode 

operation.  
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A grounded saturable absorber is a common element to each of the devices tested 

over the range of temperatures which optical pulses are generated. It is observed that in 

each case there is a characteristic temperature where the device transitions from GS to ES 

operation. In Fig. 4-9 the corresponding grounded absorber transition temperatures are 

plotted for the full range of devices studied. Likewise, the resultant optical spectra are 

shown in Figs.4-10 through 4-12 for a variety of biasing condition around the GS/ES 

transition temperature on the devices having La=0.8-mm, 1.0-mm and 1.2-mm, 

respectively. From Fig 4-9, these transition temperatures are found to linearly decrease 

with increasing absorber length. The blue line in Fig. 4-9 is the resulting least squares fit 

which has a slope of dT/dL = -39.5 oC/mm. Consequently, high temperature operation 

favors devices having low absorber to gain length ratios. This is consistent with the findings 

of the analytical model discussed in chapter 3. It has been experimentally shown that the 

La=0.8-mm device maintains fundamental MLL operation from the GS up to 93 oC. To the 

best of our knowledge, this is the highest temperature that pulses from the GS of a quantum 

dot mode-locked laser have been demonstrated [14]. 

 

As a final observation, it can be seen in Fig 4-10 that there exists a region between 

the primarily GS or ES operation where hybrid lasing of the GS and ES peaks can occur. 

This effect has been previously observed by Rafailov et. al. [15]. This is typically only 

observed when operating at temperatures near the GS/ES transition point shown in Fig. 4-

9. Under these conditions, competition between the ES pulses and GS pulses results in 

pulse broadening or even complete distortion of pulse shape. In section 4.5 the resulting 

temporal behavior will be presented for GS, ES and hybrid modes of operation.  
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Figure 4-9. Measured transition temperature from ground-state to excited-state lasing for 

devices having total cavity length of 8.0-mm, but a varying saturable absorber length from 

0.8-mm to 1.6-mm. The saturable absorber has been grounded in each case. 
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Figure 4-10. Measured optical spectra on the two-section MLL having La=0.8-mm 

absorber length. The temperature is increased from 90 to 98 oC inducing a switch from 

ground-state to excited-state lasing. 
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Figure 4-11. Measured optical spectra on the two-section MLL having La=1.0-mm 

absorber length. Temperature increased from 80 oC up to 85 oC which induced excited state 

mode-locking. Application of a small reverse bias at T=80 oC is shown to induce a hybrid 

lasing state. 
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Figure 4-12. Measured optical spectra on the two-section MLL having La=1.2-mm 

absorber length. Temperature was kept constant at 70 oC. The transition for ground-state 

to excited state lasing is induced through application of a reverse bias on the absorber and 

inreasing the injection current. 
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4.4 Electrical Spectrum Characteristics 

          RF spectrum characteristics have been captured at the key biasing conditions that 

bounded the contour maps shown in Figs. 4-2 through 4-6. This was accomplished at all 

temperatures and for all devices discussed in this dissertation. In Fig. 4-13, the resulting 

spectra are shown for the short absorber (0.8-mm) device (788B AH03) across the full 

range of temperatures examined. A common operating point of 0 V applied to the absorber 

has been used in this representation. The forward injection currents at each temperature 

corresponded to those used to generate the optical spectra plots in Fig. 4-7. For the purpose 

of being concise, the electrical spectrum characteristics for the remaining devices have 

been omitted from this dissertation as the fundamental conclusions are the same.   

 

The electrical spectrum characteristics can be used as a way of screening devices 

for possible stable mode-locking behavior. Although not as conclusive as a FROG 

measurement, the device is presumed to be sufficiently mode-locked when the fundamental 

and second harmonics exhibit at least 15-20 dB above the noise in the RF spectrum 

analyzer [16]. On average, the RF spectra for the pulses presented in Figs. 4-2 through 4-6 

exhibited 5-6 harmonics with the SNR of the fundamental RF signal being greater than 37-

dB. The typical RF linewidth for these devices in a free running condition can range from 

hundreds of kHz to a few kHz depending on the absorber bias and injection current 

conditions. The RF linewidth of these lasers can be dramatically improved through use of 

resonant feedback setups. It was previously shown that under stable resonant feedback the 

RF linewidth can be reduced to as low as 170 Hz [17]  
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Figure 4-13. Measured electrical spectrum characteristics for a grounded saturable 

absorber and temperatures ranging from T=20 to 110 oC. On average the RF spectrum 

exhibited 5-6 harmonics with the SNR of the fundamental RF signal being greater than 37-

dB. The forward injection currents were 55, 70, 80, 145, 350 and 450 mA at 20, 40, 60, 80, 

90, 100 and 110 oC, respectively. 
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4.5 Pulse Characteristics in the Temporal Domain 

          In sections 4.3 and 4.2 it was shown that the device having a 0.11 absorber to gain-

section length ratio (La=0.8-mm) was optimized for 60 oC operation. This was evident from 

an increase in the range of operation according to Fig. 4-2, and coincided with reduced 3-

dB bandwidth in the optical spectra. In this final section of chapter 4 the temperature 

dependent time domain pulse characteristics, as measured with the 140 GHz Tektronix 

DSA 8200 sampling oscilloscope, are discussed.  

 

a) Temperature Dependence of Optical Pulse Generation 

 Fig. 4-14 and 4-15 shows the measured temporal behavior of the optical pulse train 

over temperature corresponding to the optical pulse spectra of Fig. 4-7. With the saturable 

absorber grounded, the device is shown to produce mode-locked pulses across the full 

range of examined temperatures. The pulse period is 200 ps corresponding to fundamental 

mode-locking in the 8-mm laser cavity. The pulse’s Full Width Half Maximum (FWHM) 

ranged from 8 to 19 ps across the temperature excursion. It is found that the temperature-

dependent pulse durations have a minimum between 60 and 80 oC. With the freedom to 

increase the reverse bias at the absorber, the absolute shortest pulses measured were at 60 

oC with -3 V on the absorber. This case produced a pulse train with 6.2 ps FWHM. The 

pulses between 60 and 80 oC are also shown to have the least intra-pulse energy, which is 

good evidence of improved mode-locked stability at the higher operating temperatures. 

From Fig. 4-14 and 4-15 the pulse asymmetry is clearly observed. The fast leading edge 

followed by a slow trailing edge is a result of strong absorption in the saturable absorber 

which sharply trims the leading edge of the pulse. The broadened pulse in the gain section 
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forms the slowly decaying tail of the trailing edge [2,18]. It is noted that for a short absorber 

device, the pulse width in the spatial dimension can be longer than the absorber itself. For 

example, assuming an effective group refractive index of 3.5 in the laser cavity, a 15 ps 

pulse will occupy 1.3-mm of longitudinal dimension within the cavity. That is longer than 

3 out of the 5 absorber lengths studied in this dissertation. Accordingly, a scenario can exist 

where the pulse is never exclusively in the absorber section. This has interesting and 

significant impacts on the pulse characteristics. One would expect that the pulse width and 

chirp would be reduced in the longer absorber device due to more efficient pulse trimming 

when the pulse is completely encompassed by the absorber section. In the shorter absorber 

devices a portion of the pulse is being broadened by the gain section for every instance in 

time.    

 

The typical evolution of the pulse train shape is shown in Fig. 4-16a. The points 

labeled A to D correspond to biasing conditions at key points used in the construction of 

the operational maps introduced in Fig. 4-2. For convenience in Fig. 4-16b, the maps are 

shown again with annotations to mark the biasing points represented in Fig. 4-16a. 

Typically, the shortest pulses are produced at currents close to laser threshold, while 

increasing the injection current beyond laser threshold results in spectral broadening and 

pulse broadening due to self-phase modulation [13]. Point D represents a characteristic 

pulse train that may be found outside the contours of the operational maps. In this case 

pulse break-up is depicted [3], which often occurs at currents slightly higher than the 

boundaries of the map.  
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Figure 4-14.  Normalized temporal measurements of the 5 GHz pulse train as captured on 

a 140 GHz digital scope.. The pulse widths (FWHM) corresponding to the pulse spectra 

shown in FIG. 4-7 were 17 ps, 16 ps and 9 ps, at temperatures of 20, 40 and 60 oC, 

respectively. 
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Figure 4-15. Normalized temporal measurements of the 5 GHz pulse train as captured on 

a 140 GHz digital scope. The pulse widths (FWHM) corresponding to the pulse spectra 

shown in FIG. 4-7 were 8, 17 and 19 ps at 80, 100 and 110 oC, respectively. 
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Figure 4-16. (a) Pulse train output at T=60 oC and Va= -5V for a device with La=0.8-mm. 

Points A to D correspond to biasing conditions at key points in the T=60 oC operational 

map shown in Fig. 4-2. Shown again in (b) for convenience  

 

b) 

a) 
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b) Pulse Generation under GS/ES Hybrid Operation 

As described in section 4-3, and shown in Figs 4-10 through 4-12, when operating 

at temperatures near the GS to ES transition point, competition between the lasing states 

often results in distortion of pulse shape and consequently the deterioration of mode-

locking [16]. It is found that there exists an intermediate condition where both ground and 

excited states are lasing simultaneously. Under these circumstances, unstable operation is 

generally observed, characterized by switching between pure ES lasing and hybrid lasing, 

or similarly, switching between pure GS and hybrid state lasing.  In some regimes away 

from either of these boundaries, pulse trains with multiple peaks exhibit regular repetition. 

Simultaneous two-state lasing in quantum dots has been previously noted [19]. One such 

case is shown in Fig. 4-17 for the device having a 1.2-mm absorber. At T=70 oC, I=316 

mA and V = 0 V applied to the absorber, hybrid lasing occurs and more complex pulse 

structure is observed. Fig. 4-17b shows the optical pulse as measured from the high-speed 

oscilloscope. It is believed that this pulse shape is the result of a superposition of two more 

narrow optical pulses, one of the ES and the other of the GS. This hypothesis could be 

validated in the future with a FROG measurement, which would determine the spectral 

content of the optical pulse. Another possibility could be to use a tunable filter to block 

contributions of the output for one of the lasing states and measure the resulting pulse train 

for stability.   

 

To contrast the simultaneous lasing of excited and ground states shown in Figs. 4-

17, the temporal pulse data for the conditions of pure GS and pure ES lasing are shown in 

Figs. 4-18 and 4-19. The biasing conditions selected were; (4-18a-b) T=60 oC with V=0 V 
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and I=132 mA, (4-18c-d) T=60 oC with V=-2.5 V and I=347 mA, (4-19a-b) T=70 oC with 

V=0 V and I=224 mA and (4-19c-d) T=70 oC with V=-1 V and I=312 mA. The 

corresponding optical spectrum data are also shown. From Figs. 4-18 and 4-19, it is seen 

that the tail decays more gradually for the case of ES lasing ultimately leading to increased 

levels of intra-pulse energy. This is presumably a result of slower gain/absorber dynamics 

at the elevated values of current [18]. Although the narrowest pulses were found to occur 

for the case of pure GS lasing, the quality of the optical pulses as generated from the ES is 

still qualitatively good. ES pulses are achievable over a wide range of biasing conditions 

producing pulses with FWHM of less than 18.7 ps and excellent pulse power. Analysis of 

these conditions with an electrical spectrum analyzer also shows excellent RF extinction 

ratio.  

 

Owing to the high quality of optical pulses produced from the ES in addition to 

those of the GS, the possibility of uncooled optical time division multiplexing in a QD 

MLL has been recently expressed [20]. This can dramatically reduce the energy-per-bit of 

the transceiver architecture, as traditionally the thermoelectric coolers account for a 

significant percentage of the total power budget. With a maximum pulse FWHM of 18.7 

ps and a period of 200 ps, 10 OTDM channels could be realized resulting in a total 

aggregate bandwidth of 50 Gbps [21].   

 

c) Time-Bandwidth Product 

In this final subsection of chapter 4 the temperature-dependent time-bandwidth 

product (TBP), as measured from the high-speed sampling oscilloscope, is briefly 
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discussed. In chapter 5, the TBP data presented here is re-visited when a comparison is 

drawn between reduced values of unsaturated absorption at higher temperatures and low 

values of measured TBP. Using the 3-dB bandwidth from Fig. 4-7 and the pulse widths 

(FWHM) from Fig. 4-14, the evolution of the TBP has been calculated. In Fig. 4-20 the 

temperature dependent TBP is given for 0 V (red stars), 1 V (blue squares), 5 V (green 

triangles) and 7 V (navy diamonds) reverse bias applied to the saturable absorber. It is 

clearly seen that in all cases the TBP is improving with increasing temperature, such that 

there is minimum value between 60 and 80 oC of ~1.3. Above 98 oC, when the quantum 

dot mode-locked laser is operating from the ES, the resulting pulses presumably become 

more heavily chirped, and the TBP rises to 18 at 100 oC. This is not surprising since the 

gain-section current required to obtain mode-locked pulses is much higher than the 

threshold currents above 80 oC. The observed minimum in TBP at temperatures above 

room temperatures is consistent with the prior findings of this chapter wherein a great deal 

of evidence has been presented showing that device performance improves with high 

temperature operation in the short absorber device. In the next chapter we examine the 

physical mechanisms behind these observations.    
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Figure 4-17. Measured optical spectra (a) of the two-section MLL having La=1.2-mm 

(788B AH09). Shown for the biasing conditions of T=70 oC with V=0 V and I=316 mA. 

The equivalent pulse train in the time domain under these condtions is shown in (b). 

Competition between the ES and GS pulsing has lead to pulse overlap.    

b) 

a) 
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Figure 4-18. Measured optical spectra of the two-section MLL having La=1.2-mm. Shown 

for the biasing conditions of; (a-b) T=60 oC with V=0 V and I=132 mA, (c-d) T=60 oC with 

V=2.5 V and I=347 mA,  
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Figure 4-19. Measured optical spectra of the two-section MLL having La=1.2-mm (788A 

AV06). Shown for the biasing conditions of (a-b) T=70 oC with V=0 V and I=224 mA, and 

(c-d) T=70 oC with V=1 V and I=312 mA.  
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Figure 4-20. Time-bandwidth product (TBP) over temperature for the operating bias points 

of 0, -1, -5, and -7 V applied to the saturable absorber. TBP values are determined using 

the temporal and spectral data presented in Figs. 4-7 and 4-14. A minimum TBP is shown 

to occur between the temperatures of 60 and 80 oC. 
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Chapter 5 – The Evolution of Device Performance with Increasing 

Temperature and Bias Conditions 

In chapters 3 an anlytical model was presented which predicted that the path toward 

high temperature operation in a quantum dot mode-locked laser was to move to a shorter 

absorber length. It was subsequently demonstrated in chapter 4 that the 0.8-mm and 1.0-

mm abosrber devices indeed exhibited the best temperature performance. It was discovered 

that these devices perfomed better at higher operating temperatures, evident by the 

expanded operational range in the contour maps (Fig. 4-2) and minimum pulse TBP (Fig. 

4-20) between 60 and 80 oC. In section 5.1 the influence of temperature dependent 

unsaturated absorption on the optical pulse width is put forth as the clear physical 

mechanism that drives improved performance at elevated temperatures. In section 5.2 the 

stability of the mode-locked lasers is examined with more scrutiny using frequency 

resolved optical gating (FROG) measurements. The evolution of the pulse TBP with 

temperature is revisited and compared to that of chapter 4. In section 5.3, for the first time 

non-linear two-pulse-per-round-trip generation is shown to be a stable effect as verified by 

FROG. This has exciting implications for applications requiring a high repetition rate 

source. Finally, in section 5.4 the waveguide geometry and its relative impact on the 

effective current density and ultimately the range of pulsed operation is discussed. 

 

5.1 Temperature Dependent Tuning of Modal Gain and Absorption 

          One of the key observations from chapters 3 and 4 is that the devices which are 

optimized for broad temperature operation (La/Lg=0.11&0.14) prefer lasing temperature 
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around 60 oC. This is evidenced not only by expanded regions of mode-locked operation, 

but also from measurements of the pulse characteristics wherein narrow pulse durations 

and minimum inter-pulse energy occurred for the temperatures between 60 and 80 oC. The 

analytical model from chapter 3 has demonstrated great utility; however, it fails to capture 

the dynamics related to improved stability over an increased range of injection currents. 

Eqn. (3-4) is derived in the limit that the pulse train is sinusoidal [1,2], while Eqn. (3-6) 

describes the threshold condition for lasing. In addition, the model assumes a uniformly 

distributed gain and loss everywhere in the cavity, i.e., the variation of the gain and loss 

characteristics along the length of the device is not accounted for [3]. The effect of lumped 

gain/loss elements is magnified at currents above threshold and manifests in self-phase 

modulation and gain saturation [4].  Due to these constraints, the model is best suited to 

conditions near threshold. Previous studies have shown that mode-locking stability can 

improve at elevated temperatures due to an increased rate of thermionic emission [5,6]. In 

this study, it is shown that there are potentially other factors leading to improved stability 

with temperature. In particular, a trend in the unsaturated absorption has been found that 

explains the expanded range of pulsed operation beyond the onset of mode-locking. 

 

Using the method described in section 3.1, In Fig. 5-1 the unsaturated absorption 

(ao) at the gain peak is derived from modal gain and loss measurements and plotted over 

the full range of temperatures studied. In section 3.1 it was noted that the average 

differential wavelength shift in the gain spectra (0.64  nm/oC) was larger than that in the 

absorption spectra (0.44 nm/oC) resulting in a gain peak walk off that reduces the 

absorption at the lasing wavelength for elevated temperatures. As seen in Fig. 5-1 the 
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minimum unsaturated absorption values are measured at 60 oC for all absorber biasing 

conditions. A similar trend can be found in the variation of the TBP with temperature, first 

reported in Fig. 4-20 and shown again in the inset of Fig. 5-1, wherein the TBP is observed 

to minimize between 60-80 °C. It is found that a reduced value of ao allows for lower modal 

gain, go, in the amplifying section of the device as per Eqn. (3-6).  As a result, the pulse is 

subjected to less distortion per pass in the gain section, and pulse shaping takes place more 

gradually. Thus, the pulse widths at 60 °C are generally shorter than those at any other 

temperature; accordingly, the operational conditions yielding pulses below 18.7 ps expand 

as observed in Fig. 4-2 and 4-3. The remarkable similarity between the behavior of the 

unsaturated absorption and the TBP provide strong experimental evidence that the tuning 

of the modal gain peak off of the absorption peak is indeed responsible for improved 

operation at elevated temperature. This previously unreported correlation between low 

unsaturated absorption and reduced TBP provides valuable insight into the physical 

mechanisms that drive mode-locking quality. With this understanding, future devices can 

be designed to leverage broad gain bandwidths and selective lasing wavelength capabilities 

to operate in a regime that minimizes the unsaturated absorption and thus maximizes the 

range of biasing conditions over which the device produces high quality pulses. 
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Figure 5-1. Experimentally measured unsaturated absorption at the gain peak over the 

temperature range from 20 to 120 oC for saturable absorber reverse bias of 0 to -7 V. The 

absoption is found to reach a minimum around T=60 oC. This is a consequnce of the gain 

peak/abosrption peak walk off. Inset: Time-bandwidth product over temperature for 0 V 

reverse bias at the saturable absorber. 
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5.2 Experimental Study of Operational Stability 

          The characterization techniques described in chapter 4 for resolving the temporal 

behavior of the mode-locked laser have proven adequate for the construction of the contour 

maps of Figs. 4-2 through 4-6, which described the operational range of the devices. In 

general, with the high speed sampling oscilloscope we can gather information regarding 

the pulse width and asymmetry to a high level of accuracy. This is especially true for pulses 

with FWHM greater than 10 ps. However, it has been shown that simultaneous 

characterization of time and frequency is necessary for true determination of mode-locked 

stability [7]. In this section we examine the temperature characteristics of the laser with a 

state-of-the-art Frequency Resolved Optical Gating (FROG) pulse measurement system.   

 

a) Description of FROG Measurement 

          Light from the quantum dot mode-locked laser is coupled into polarization 

maintaining (PM) fiber using the optical head described in chapter 4. At the optical input 

of the FROG, the light is collimated and launched into a free space Michelson 

interferometer. A variable delay, set by the user interface software, produces a collinear 

beam of pulse pairs which are then coupled into a 45.4 mm a-periodically-polled LiNO3 

(A-PPLN) waveguide. The delay is scanned such that power of the second harmonic 

generation (SHG) is 4X greater when the pulses are overlapping compared to the case of 

no overlap as the efficiency of SHG is proportional to |E2| [8,9]. The frequency doubled 

light is then focused into a multi-mode fiber with a microscope objective, and routed into 

a spectrometer. This allows for determination of pulse asymmetry and chirp. A more 

detailed description of this setup can be found in [7] 
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b) Pulse Characteristics over Temperature 

          Using the method described above, FROG measurements have been captured for the 

device having La=1.0-mm (788B AH05) at temperatures of 20, 40, and 50 oC for the 

absorber reverse bias of 0V, 1V, 3V and 5V.  Beyond 50 oC the optical spectrum has red-

shifted outside of the usable range for the A-PPLN waveguides currently available. The 

device is shown to maintain stable mode-locking across the full range of examined 

conditions. These measurements serve as the first true verification of operational stability 

over temperature in this device as it is the first time that simultaneous time and frequency 

measurements have been captured. In Fig. 5-2a the retrieved temporal intensity and phase 

is shown at the temperature of 20 oC for the operating point of 3 V reverse bias applied to 

the saturable absorber and 62 mA of forward injection current. The corresponding temporal 

phase and chirp is also shown in Fig. 5-2b. It is found that the 20 oC case produced a pulse 

width FWHM of 8.6 ps. The pulse’s asymmetric profile is clearly seen, which in the case 

of Fig. 5-2 is shown to have a slow leading edge followed by a fast trailing edge. The 

temporal phase is found to be parabolic with a concave-up profile. In contrast, it has been 

discovered that when the pulse’s temporal intensity exhibits a fast leading edge followed 

by a slow trailing edge, the temporal phase will be parabolic with a concave-down profile. 

An example of this is found in Fig. 5-3 where the pulse temporal intensity, phase and chirp 

are shown for the temperature of 40 oC.  Fig. 5-3a and 5-3b are the retrieved FROG traces 

for an injection current of 82 mA and a reverse absorber bias of 3 V. Fig. 5-3c and 5-3d 

are the retrieved FROG traces for an injection current of 95 mA and a reverse bias of 7 V. 

Fig. 5-3c and 5-3d are shown for the purpose of contrasting the different pulse shapes.  
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It should be noted that FROG SHG has time direction ambiguity, thus it is not 

certain if the flipping of the asymmetry is an artifact of the pulse measurement or a real 

effect. Never-the-less, reversal of the asymmetry in the temporal profile has been studied 

in depth with a numerical (DDE) model that enabled determination of the optical field, 

optical gain, and optical absorption profiles with time from a mode-locked laser [10]. 

Therein, the variances in the pulse shape were attributed to change absorber recovery time 

for different linewidth enhancement factors (-parameters). For the case when the leading 

edge of the pulse is steeper than the trailing edge, the temporal phase is concave down. It 

has been shown found that slower absorber saturation and faster recovery is correlated to 

a larger -parameter [10]. Accordingly, as the pulse, which has been broadened by the gain 

section, enters the saturable absorber, it takes longer for the total loss to drop below the 

total gain. This creates the slow leading edge. However, because the absorber recovery 

time is fast, the pulse is efficiently trimmed on the trailing edge. This leads to a pulse shape 

similar to the shape of the pulses seen in Figs. 5-3a and 5-3b. On the other hand, for the 

case of a lower -parameter, the absorber saturates rapidly but the absorber recovery time 

is slower [10]. In this case, the DDE model predicted that when the pulse enters the 

absorber it is sharply trimmed on the leading edge, however, the trailing edge is more 

gradual due to the slower absorber recover time. This gives way to a pulse shape similar to 

that of Fig. 5-3c.  
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Figure 5-2. Retrieved pulse characteristics from FROG at T= 20 oC for forward injection 

current of 62 mA and reverse bias of 3 V. (a) Retrieved pulse intensity and temporal phase. 

(b) Temporal phase profile and chirp.  

b) 

a) 
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Figure 5-3. Retrieved pulse characteristics from FROG at T= 40 oC for forward injection 

current of 82 mA and reverse bias of 3 V. (a) Retrieved pulse intensity and temporal phase. 

(b) Temporal phase profile and chirp. (c) Temporal intensity and phase at T= 40 oC for 

forward injection current of 95 mA and reverse bias of 7 V. (d) Temporal phase profile and 

chirp 

 

 

 

b) 

a) c) 

d) 
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Figure 5-4. Retrieved pulse characteristics from FROG at T= 50 oC for forward injection 

current of 109 mA and reverse bias of 3 V. (a) Retrieved pulse intensity and temporal 

phase. (b) Temporal phase profile and chirp. 

b) 

a) 
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In Fig. 5-4 the retrieved FROG characteristics are shown for the La=1.0-mm device 

at T=50 oC for the biasing conditions of 3 V reverse bias on the saturable absorber and 109 

mA injection current across the gain region. This was the highest temperature examined 

with the FROG. It is found that in comparison to Figs. 5-2 and 5-3, this case produced a 

narrower pulse FWHM being 3.8 ps as shown in Fig. 5-4. Overall, the narrowest pulse was 

measured at T=50 oC with 5 V reverse bias and I = 119 mA. Those conditions produced a 

pulse FWHM of 3.5 ps with 1.59% FROG error. The FROG error in all of the cases 

examined here was less than 2%. Upon examination of the temporal and spectral phase 

characteristics of the device as recovered by FROG, two primary observations are noted. 

Firstly, the magnitude of the differential temporal phase with time is minimized at the lower 

temperature values, seemingly in contrast with the recovered pulse widths, which minimize 

at higher temperature. It is concluded that additional factors must be influencing the 

temporal pulse width. Accordingly a second observation is made and comes with 

examination of the spectral phase versus angular frequency. Pulse shaping in a laser is the 

result of the interplay between group delay dispersion (GDD) and self-phase modulation 

of the gain medium [11,12]. The group delay dispersion is the derivative of the group delay 

with respect to angular frequency and can be expressed as: 

 

  2

2





 d

d

d

dT
GDD d 

     5-1 

 

where  is the angular frequency,  is the spectral phase and Td is the group delay which 

is equal to the first derivative of the spectral phase with respect to angular frequency [11]. 
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Calculations of the GDD yield approximately constant values due to the quadratic nature 

of the spectral phase. These results have been summarized in the short table below for the 

applied reverse bias of 3V and the bias currents of I = 62, 82, and 109 mA at the 

temperatures of 20, 40 and 50 oC, respectively. 

 

Table 6: Group Delay Dispersion with increasing temperature
 

Temperature 

(oC) 

Group Delay Dispersion  (ps2) 

V=3 V 

Group Delay Dispersion (Linear 

Chirp)  (ps/nm) V=3 V 

20 45.8 -16.1 

40 19.5 -6.9 

50 15.3 -3.5 

 

From Table 6 it is found that the group delay dispersion reduces at the higher temperatures 

and achieves a minimum of 15.3 ps2 at 50 oC. This is in good agreement with the reduced 

optical pulse widths observed at higher temperatures. A similar correlation has been 

previously noted by Schmeckebier et. al. [13]. In that study, it was shown that the pulse 

FWHM and TBP followed the same trend as the slope of the linear spectral chirp, which is 

expressed in units of ps/nm. This is another form of the GDD, similar to the approach of 

[11], wherein the GDD is given as the wavelength derivative of the group delay, Td, which 

yields GDD in time per unit length. Recall that Td is the derivative of the spectral phase 

with respect to angular frequency. For direct comparison, in Table 6 the GDD (slope of the 

linear chirp) is given in units of ps/nm and is shown to reduce at increasing temperature. 

The values of GDD in units of ps/nm are plotted against the pulse FWHM in Fig. 5-5, and 

the same trend is observed over the range of examined temperatures. 
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          Furthermore, examining the conditions of Fig. 5-3b and 5-3d, where at T=40 oC a 

stronger reverse bias of 7V was applied to the absorber and shown to flip the asymmetry 

of the temporal pulse shape, it is seen that the absolute value of the GDD reduces from 19.5 

ps2 to 14.8 ps2. This is reasonable given that the flip in asymmetry was an indication of 

reduced linewidth enhancement factor. It is however noted that the flip in the asymmetry 

of the spectral phase also creates a sign change in the second derivative of the spectral 

phase which is the GDD. A negative GDD, when expressed in units of s2, corresponds to 

anomalous dispersion in contrast to a positive GDD which corresponds to normal 

dispersion [12]. Further experimentation is required to determine if a single device can 

truly exhibit both of these characteristics, or if this is some sort of artifact of the pulse 

measurement resulting from the time ambiguity. 

 

The evolution of the pulse time-bandwidth product (TBP) has also been determined 

using the FROG for precise measurement of the optical pulse width and the optical 

spectrum analyzer for measurement of the 3-dB bandwidth of the optical spectrum. From 

this, a comparison is drawn to the TBP previously shown in chapter 4. The pulse width 

(FWHM), 3-dB bandwidth and calculated TBP are presented in Table 7 at the temperatures 

of 20, 40 and 50 oC. The corresponding TBP values are plotted in Fig. 5.6 for reverse bias 

of 0 V (blue dashed line), 1 V (green dashed line), 3 V (orange dashed line) and 5 V (red 

dashed line). It is found that the TBP reduces at higher temperatures to as low as 1.43 at 

50 oC, being as high as 5.57 at 20 oC. It was previously demonstrated in Fig. 4-20 that the 

TBP reached a minimum around T=60 oC. Although there is not enough temperature range 

in this experiment to demonstrate a minimum around T=60 oC, the general trend of 
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improving TBP at elevated temperatures is confirmed. It is also noted that the reduced 

levels of TBP shown in Table 7 and Fig. 5-6 coincide with reduced levels of GDD 

discussed above. 

 
 

 

 

 Figure 5-5. Optical pulse Full Width Half Maximum (FWHM) recovered from FROG 

pulse measurements (red dashed line), and Group Delay Dispersion (GDD) plotted in units 

of ps/nm at 20, 40 and 50 oC. 
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Table 7: Optical Pulse Width (FWHM). 3-dB bandwidth of the optical spectrum and the 

calculated time-bandwidth product 

 

Temp Reverse 

Bias 

(V) 

Pulse Width 

FWHM (ps) 

Optical Spectrum 

3-dB bandwidth 

Time-Bandwidth 

Product 

 (nm) (GHz)  

 

 

20 oC 

0 17 1.6 317.2 5.39 

1 15 1.9 371.6 5.57 

3 8.6 2.5 494.9 4.26 

5 5.0 3.3 653.0 3.27 

 

 

40 oC 

0 7.0 1.4 275.2 1.93 

1 5.7 1.7 334.0 1.90 

3 5.1 2.4 472.5 2.41 

5 3.9 2.7 531.6 2.07 

 

 

50 oC 

0 6.8 1.1 210.4 1.43 

1 6.1 1.5 293.0 1.78 

3 3.8 3.1 607.6 2.31 

5 3.5 3.1 606.3 2.13 
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Figure 5-6. Evolution of time-bandwidth-product over temperature calculated from FROG 

measurements of the optical pulse train at T= 20, 40 and 50 oC. Shown for reverse bias 

voltages of 0 V (blue dashed line), 1 V (green dashed line), 3 V (orange dashed line) and 

5 V (red dashed line) 
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5.3 Stable Double Pulsing 

           As discussed in chapter 1, the aggregate bandwidth from a quantum dot mode-

locked laser can be dramatically increased by combining the laser with Si photonics to 

realize time and wavelength division multiplexing schemes [14,15]. In addition to the 

amount of parallelization within the architecture, bandwidth can be directly increased by 

adjusting the repetition rate of the optical pulse train. In this dissertation, the proficiency 

to achieve a wide range of stable (FROG confirmed) operation at the fundamental 

repetition rate of 5 GHz has been demonstrated. In this section, for the first time double 

pulsing as previously predicted by DDE modeling [16] is shown to be a stable effect as 

confirmed by FROG pulse measurements. In a previous study, using a double interval 

technique, the ability to stimulate specific higher order repetition rates compared to the 

fundamental was demonstrated in a multi-section device [17]. Here, a range of FROG 

confirmed stable harmonic mode-locking is demonstrated in a two-section laser. This 

discovery has strong engineering implications given that 2X increase in total capacity can 

be achieved by simply biasing the device in an appropriate manner.    

 

It is found that for the device having an absorber length of 1.0-mm (ZLG788B 

AH05), when operating at the temperature of T=20 o C, a region of double pulsing (two 

pulses per roundtrip) occurs at the reverse voltage of 5 V, between the injection currents of 

108 and 118 mA. The evolution of the pulse shape is captured for visualization purposes 

with the high speed sampling oscilloscope and shown in Fig. 5-7. The onset of fundamental 

mode-locking occurs for the current of 70 mA (red curve). Increasing the current beyond 

the onset of mode-locking broadens the pulse until around 94 mA (green curve). Between 
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95 and 107 mA the pulse train becomes highly unstable. Very abruptly, at 108 mA narrow 

pulse generation occurs at double the fundamental repetition rate. Double pulsing is 

continuous across the range of 108 to 118 mA. Between 119 and 127 mA the pulse again 

becomes unstable. An example of a typical pulse shape within this region is shown in Fig. 

5-7 at I=119 mA (maroon curve). Pulsing at the fundamental repetition rate resumes upon 

increasing the current further; however, these pulses are very wide as seen in Fig 5-7 at 

I=130 mA (light blue curve). The electrical spectrum characteristics of the pulse train are 

shown in Fig. 5-8a for a 45 GHz span.  A narrow 6 MHz RF span has also been captured 

around the 10 GHz peak in Fig. 5-8b. From this, a Lorentzian fit has deduced an RF 

linewidth of 527 kHz. This is significantly higher than the line width under resonate 

feedback, which has been measured as low as 170 Hz [18]. It is clearly seen from Fig. 5-

8a that the power in the 2nd harmonic is far greater than that of the fundamental 5 GHz 

frequency. The SNR of the 10 GHz peak is 43.8-dB and it is noted that the harmonics at 

20 and 30 GHz exhibit greater SNR than those at 5, 15, and 25 GHz. The 5 GHz peak has 

a SNR of less than 10-dB. The double pulsing operation described here should not be 

confused with the harmonic mode-locking induced by the colliding pulse mode-locking 

effect [19].  In the latter, the absorber is positioned in the center of the cavity to induce the 

2nd harmonic [17], whereas in the case that has been just been described, increased gain 

current is the method utilized.  Therefore, one technique is geometrical, the other electrical. 
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Figure 5-7.  Evolution of pulse shape measured with the high speed sampling oscilloscope. 

The QD MLL has an absorber length of 1.0-mm and is shown biased from 70 to 130 mA 

with a reverse bias of 5 V at T=20 oC. The pulse is shown to transition from fundamental 

mode-locking to harmonic mode-locking between 94 and 119 mA  

 

 

 



 

130 

 

Figure 5-8.  Electrical spectrum of QD MLL at T=20 oC with reverse bias of 5 V and 

injection current of 110 mA. (a) 45 GHz span showing high power in 2nd harmonic peak, 

and (b) 6 MHz span showing raw data (black line) and Lorentz fit (red line).    

b) 

a) 
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The observations in Figs 5-7 and 5-8 indicate that the device is pulsing at twice the 

fundamental repetition rate, but they do not serve as sound evidence that the double pulsing 

is in fact a stable effect. Simultaneous time and frequency characteristics, which are the 

necessary and sufficient criteria for determining mode-locked stability [7], have not 

previously been captured for double pulsing induced by gain non-linearities. To this point, 

FROG measurements are captured at the temperature of 20 oC, with a reverse bias of 5 V, 

over the injection current range of 70 to 130 mA. The retrieved temporal intensity, temporal 

phase and chirp are shown in Fig. 5-9. The forward injection currents are represented as 

follows: (a, b) I=70 mA, (c, d) I=94 mA, (e, f) I=108 mA, (g, h) I=110 mA and (i, j) I=130 

mA. 

 

This is the evolution of the optical pulse train with increasing current as measured 

by FROG: It is found that the pulses generated at the onset of mode-locking converge 

easily, producing a narrow 4.96 ps pulse with low chirp. This case is shown in Fig. 5-9 (a, 

b). (The FROG is considered to converge when the error is less than 2%). As the injection 

current is increased it is not possible to capture a FROG trace with low error, and beyond 

approximately I = 85 mA, no FROG traces will converge despite the fact that the high 

speed sampling oscilloscope displays a less than 20 ps pulse (Fig 5-7). An example of this 

region is shown in Fig. 5-9 (c, d). As mentioned above, at 108 mA the device abruptly 

transitions to harmonic mode-locked operation. At this point, the FROG measurement once 

again begins to converge. The pulses in Fig. 5-9 (e through h) are those of the harmonic 

mode-locked region, and have pulse widths of approximately 6 ps. Beyond the region of 

harmonic mode-locking, the device enters an unstable regime wherein no FROG trace can 
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converge. As seen in Fig. 5-7, at the injection current of 130 mA, the device once again 

returns to fundamental mode-locking; however, this region does not produce converged 

FROG pulses. This final case is shown in Fig. 5-9 (i, j). In terms of the group delay 

dispersion (GDD) discussed in section 5.3, calculations of the second derivative of the 

spectral phase with respect to angular frequency yield approximately constant values of 

21.5, -17.7 and 23.8 ps2 at I = 70, 108 and 110 mA, respectively. The negative value of 

GDD arises from the reversal of the asymmetry that occurs at I=108 mA. The reduced 

absolute value of the GDD under these circumstances is consistent with the observations 

made in reference to Figs. 5-3a and 5-3c where the |GDD| was show to reduce upon reversal 

of the asymmetry. This is potentially related to reduced values of line-width enhancement 

factor under these biasing conditions [10] 

 

Non-linear double pulsing is not only an experimental observation, but it has been 

predicted by the numerical DDE model [16]. Therein, the simulated regimes of two pulses 

per roundtrip, three pulses per roundtrip, 4 pulses per roundtrip and potentially even 5 

pulses per roundtrip were demonstrated. The number of operational regimes was shown to 

be highly voltage dependent such that higher voltages favored the non-linear dynamics 

[16]. This is consistent with the experimental results presented here. The reverse bias of 5 

V was selected in Figs. 5-7 through 5-9 because it produced a regime of harmonic mode-

locked operation. The lower voltages did not demonstrate this type of operation. It is also 

noted that the devices having a short absorber (La=0.8 and 1.0-mm) were considerably 

more likely to exhibit the non-linear dynamics. Devices having longer absorber lengths did 

not have any regions of harmonic mode-locking. This study marked the first demonstration 
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of the stability associated with harmonic mode-locked operation. It has now been shown 

that there is a 10 mA range wherein the 1.0-mm absorber device exhibits stable harmonic 

mode-locking. This is not only desirable for increased aggregate bandwidths for data 

transmission architectures, but also has practical utility for selectable pulse repetition rates 

from a single device.  
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Figure 5-9.  Demonstration of stable double pulsing in a quantum dot mode-locked laser. 

The evolution of the optical pulse train is shown for increasing current at T=20 oC and 

reverse bias of V=5 V. The forward injection currents are (a, b) I=70 mA, (c, d) I=94 mA, 

(e, f) I=108 mA, (g, h) I=110 mA and (i, j) I=130 mA. Mode-locking at the fundamental 

repetition rate occurs for (a through d) then enters a region of double pulsing shown in (e 

through j). Increasing the current further, the device returns to the fundamental repetition 

rate shown in (i, j). The plots displayed in grey scale represent regions where FROG did 

not converge; (c, d) and (i, j).  
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5.4 Effective Current Density in the Active Layer 

In this final section of chapter 5, the impact of effective current density on device 

performance is discussed. As the next generation of mode-locked laser designs for high 

temperature operation are being developed, careful consideration should given to the ridge 

waveguide geometry. In chapter 2 it was shown that for the same applied current density, 

a device having a narrower ridge width will have a lower effective current density. This 

was attributed to an increase lateral current spreading into the cladding layer in the narrow 

ridge. It was subsequently demonstrated that the threshold current density in the wider 5-

µm ridge width device was indeed lower than that of the narrower 3.5-µm ridge device 

(Fig. 2-8). We now examine the relative impact that this has on the operational range of 

the mode-locked lasers. 

 

One would expect that the device having a higher effective current density should 

exhibit better mode-locking characteristics, given that increased levels of injection current 

increases the susceptibility to non-linear effects [4].  Examining this further, an 

experimental operational map has been constructed for the 3.5-m device (ZLG788A 

AV06). The operational range of this device is compared to that of Fig. 4-4, which is the 

operational map for the equivalent La=1.2-mm device with a 5.0-m ridge width 

(ZLG788B AH09). In Fig. 5-10, the resulting operational maps are shown side-by-side for 

convenience. There are three representations of the maps. The first, Figs. 5-10a and 5-10b, 

is shown for the x-axis in units of mA; this is equivalent to the maps presented in chapter 

4. In the second, Figs. 5-10c and 5-10d, the x-axis has been normalized for current density 

to take into account the different ridge widths. For the third and final variation, Figs. 5-10e 
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and 5-10f, the x-axis carries the units of mW/m and is a measure of the output power 

which has been normalized for the different ridge widths. It is clearly noted from Fig. 5-

10c and 5-10d that mode-locking occurs at much higher current densities in the 3.5-m 

device. It is also noted that while the 5-m device exhibits narrow pulse generation at 

threshold, the onset of narrow pulses in the 3.5-m ridge that does not occur directly until 

significant currents above threshold. This is a direct consequence of the reduced effective 

current density in the narrow ridge device, which increases the threshold current density 

[20]. It follows that with higher current density, an increased level of spontaneous emission 

is present at the onset of mode-locking. This acts to broaden the pulses at onset such that 

they do not meet the criteria for constructing the contours of the operational map. As the 

current is increased, the spontaneous emission noise is reduced and the pulses narrow; 

however, as seen in Fig. 5-10, a manifest gap occurs between threshold and the onset of 

narrow pulse generation for the 3.5-µm device.  

 

The upper current limit of the narrow pulse generation is found to be related to 

power. For the same power, the photon density will be greater in the narrow ridge device 

as a result of tighter optical confinement, thus the operational maps in Figs. 5-10e and 5-

10f show the output power normalized to the ridge waveguide width and expressed in units 

of (mW/m). It is observed that the limit where pulses become too wide to satisfy the 

criteria for the maps is approximately the same for both devices. For example, the cutoff 

normalized power for a reverse bias of 5 V at 40 oC is 17.8 mW/m in the 3.5 m ridge 

device, and 17.3 mW/m in the 5 m device. The cutoff normalized power for a reverse 

bias of 5 V at 20 oC is 10.3 mW/m in the 3.5 m device and 10.8 mW/m in the 5 m 
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device. Given that the onset of narrow pulse generation is delayed due to the lower effective 

current density, and coupled with the observation that the upper current cutoff for narrow 

pulse generation occurs at approximately the same photon density, it follows that the 

operable range is significantly reduced in the narrow ridge device. This is consistent with 

the observations of Fig. 5-10, and is a valuable study for processing designs of the ridge 

waveguide geometry as it suggests that a wider ridge waveguide can increase the range of 

operational stability by virtue of improved effective current density in the active layer of 

the device. As a next step, an experimental study of the performance of devices with 

different ridge heights, or thicknesses of the unetched cladding layer, would be worthwhile. 

 

In this chapter some of the key physical mechanisms that impact pulse stability 

have been examined. For the first time, improvement in operational range at higher 

temperature has been explained by a correlation between reduced values of unsaturated 

absorption and low values of the time-bandwidth product. This is a positive consequence 

of the gain peak walking-off of the absorption peak at elevated temperature.   A state-of-

the-art measurement system, FROG, was also introduced and subsequently used to verify 

the evolution of the time-bandwidth product over temperature. Furthermore, the non-linear 

effect of double-pulsing was studied and shown for the first time to be a stable condition 

experimentally. This was verified by convergence of pulses in the FROG which is currently 

the most accurate indication of stable mode-locking. Finally, the waveguide geometry and 

the relative impact on the range of operation across temperature were discussed.  



 

139 

 

 

Figure 5-10. Measured operational maps for two devices having same saturable absorber 

length but with different ridge waveguide widths of (a, c, d) 3.5 m and (b, d, e) 5.0 m. 

X-axis in units of mA (a,b), current density (c, d)  and power normalized to the ridge 

waveguide width (e, f). 

d) c) 

w=5.0 m w=3.5 m 
b) a) 

f) e) 
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Chapter 6 – Conclusions/Future Work 

6.1 Summary 

           In this dissertation, a detailed study of the time-domain characteristics of optical 

pulses generated from quantum dot passively mode-locked lasers was performed. Devices 

having different cavity geometry and ridge waveguide design were extensively studied 

over a wide range of operating temperatures and currents using analytical modeling 

techniques to predict the regimes of operation. Experimental measurements of the 

operational range and ultra-sensitive frequency resolved optical gating (FROG) pulse 

measurements were also conducted. Several milestone achievements were accomplished 

throughout the course of this dissertation. The results are summarized for each chapter 

below. 

 

       In chapter 2, the details of the quantum dot mode-locked lasers used throughout the 

dissertation were given. This included a description of the active layer composition and 

cavity geometry of the two-section mode-locked lasers and the multi-section single pass 

emitter. Additionally, the impact of the ridge waveguide geometry on the effective current 

density, and consequently the threshold current density, was calculated and experimentally 

examined. A previously unpublished expression for Jeff was derived, and it was found that 

the narrow ridge device had a lower effective current density as a result of increased lateral 

current spreading into the cladding region [1]. It was subsequently verified, through 

measurements of the threshold current density across voltage and temperature, that the 3.5-

m ridge-width device had a higher threshold current density than the 5-m ridge-width 

device. 
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          In chapter 3, using a segmented contact method [2,3], the gain and loss 

characteristics of a 6-stack DWELL [4] semiconductor laser structure were measured. The 

resulting modal gain and absorption spectra were used to derive the input parameters of an 

analytical mode-locked model. Analytical predictions of the regions of operational stability 

for a given cavity geometry across a wide range of temperatures were calculated. These 

were expressed in the form of stability maps. The stability maps demonstrated that the path 

toward high temperature operation was to move to a short absorber device. The maps also 

predicted record temperature performance could be achieved from a device having an 

absorber to gain length ratio of 0.11. In the final section of chapter 3 some of the predictive 

capabilities of the model were explored and it was shown the n-type or p-type dopants 

could potentially be used to increase the range of operational stability.      

 

          In chapter 4, following the generation of the theoretical stability maps, five different 

two-section mode-locked lasers having absorber to gain length ratios of La/Lg = 0.11, 0.14, 

0.18, 0.21 and 0.25 were characterized over temperature. Experimental measurements of 

the pulsed output in the time domain lead to the construction of operational maps in which 

the regions within the contours of the maps represented injection current and absorber 

reverse bias conditions that produced pulses of FWHM less that 19 ps. Record temperature 

performance was observed where mode-locked pulses with pulse widths ≤ 19 ps were 

emitted from 20-110oC in the mode-locked laser having a 0.8-mm absorber length. 

Additionally, excellent agreement between the modeled stability maps of chapter 3 and 

experimental operational maps was found. For the case of a grounded absorber, the model 
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was able to correctly predict the maximum temperature where mode-locking was observed 

in each device. The model also correctly predicted the transition temperatures from ground-

state operation to excited-state operation.  As a final observation, it was noted that the pulse 

time-bandwidth product reduced to a minimum around 60 oC. This was subsequently 

explained in chapter 5.  

 

          In chapter 5 some of the key physical mechanisms that impact pulse stability were 

discussed. For the first time, improvement in operational range at higher temperature was 

explained by a correlation between reduced values of unsaturated absorption and low 

values of the time-bandwidth product. This was shown to be a positive consequence of the 

gain peak walking-off of the absorption peak at elevated temperature.  Furthermore, a state-

of-the-art measurement system, FROG, was introduced and subsequently used to verify the 

evolution of the time-bandwidth product over temperature. FROG pulse measurements, 

which are currently the most accurate indication of stable mode-locking, were also used to 

examine the non-linear effect of double-pulsing. For the first time, this was shown to be a 

stable effect. Finally, the waveguide geometry and the relative impact on the range of 

operation across temperature were discussed. It was demonstrated that the reduced 

effective current density in the narrow ridge device results in an increased range above 

threshold before narrow pulse generation can occur. This was the attributed to increased 

spontaneous emission at higher injection currents. It was also shown that the cutoff for 

narrow pulse generation occurs for the same photon density in both devices and thus the 

operational range was reduced in the narrow ridge device.  
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          The results presented in this dissertation have strong implications for the next 

generation of mode-locked laser design. Clearly, the record temperature performance of 

the quantum dot mode-locked lasers makes them highly attractive for optical data 

transmission architectures in extreme environments, such as those in space. More 

practically speaking, given the discovery of the strong correlation between reduced values 

of unsaturated absorption and low time-bandwidth product, a grating could be used in the 

future to select a lasing wavelength to have the minimum unsaturated absorption. This 

would be possible due to the inhomogeneously broadened gain bandwidth [5, 6]. 

Techniques such as these can be used to reduce the optical pulse width of the laser and thus 

lending it more favorably for use in the WDM/OTDM architecture [7] discussed in chapter 

1. Perhaps even more desirable, the possibility of uncooled OTDM has also expressed [8].  

 

6.2 Future Work 

          In the final section of this dissertation the potential to further reduce dispersion in 

the laser cavity through biasing techniques of a three-section mode-locked laser is 

discussed. Improvements in the time-domain characteristics of the optical pulses emitted 

from a quantum dot passively mode-locked laser could potentially be accomplished with a 

novel method for intra-cavity chirp compensation in a three section mode-locked laser. 

This has the potential to reduce the optical pulse width to its Fourier limit. As mentioned 

in chapter 1, the parameter that quantifies the level of chirp a pulse experiences for a given 

laser cavity is known as the linewidth enhancement factor (-parameter). The - parameter 

depends on the ratio of the change in the real part of the refractive index with respect to 

carrier density (dn/dN) to the differential gain (dg/dN) of the material [9]:  
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In contrast to quantum well lasers, wherein the carrier density is clamped at threshold, in 

quantum dot lasers the carrier density is not clearly clamped because of the energy 

relaxation processes in the dots [10]. Accordingly the accumulation of carriers can occur 

in the excited-state and other non-lasing states even when the ground-state emission is still 

occurring. This has interesting implications for quantum dot lasers because it means a wide 

range of parameters can be achieved by simply tuning the applied bias current. 

  

a. Negative Linewidth Enhancement Factor       

          Of particular curiosity is the prospect of negative linewidth enhancement factor, 

which has been experimentally demonstrated using the AM/FM method by [11]. 

Subsequent calculations by Frédéric Grillot et. al.[12] showed good agreement with the 

previous experimental data, including the prediction of negative -parameter in the 

ground-state when significant injection current was applied. Fig. 6-1 shows the calculated 

ground-state -parameter (black dots) from [12], with the superimposed experimental 

measurements (red stars) form [11]. The -parameter is shown to initially increase with 

injected current. This is because filling of the carriers in the excited-state is readily 

occurring while the laser is emitting from the ground state. Then, at some bias current 

above threshold, stimulated emission from the excited state occurs and the carrier density 

in the ground state significantly reduces. In other words, the ground-state gain collapses 
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upon the onset of excited-state lasing and this leads to the negative linewidth enhancement 

factor that was experimentally observed.  

 

 

 

Figure 6-1. Calculated ground-state linewidth enhancement factor (black dots) in a 

quantum dot laser, and experimentally measured (AM/FM technique) linewidth 

enhancement factor values (red stars).  

 

b.  Three-section mode-locked laser       

          Leveraging the idea of a negative linewidth enhancement factor, one can envision a 

three-section mode-locked lasers wherein part of the laser cavity is biased heavily to induce 

the negative -parameter while the remainder of the cavity is biased to transparency so that 

the optical mode is not attenuated as it moves through that section. This three-section laser 

is now said to encompass offsetting regions of positive and negative linewidth 

enhancement factor. Here pulse compression occurs without the need for external hardware 
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such as a Chirped Fiber Bragg-Grating (CFBG) [13]. This then becomes an innovative, 

compact and inexpensive way to reduce the optical chirp within the cavity, consequently, 

increasing the peak power, stability and potential number of optical time division 

multiplexing channels.  

 

 

 

             

 

 

 

Figure 6-2. a) Schematic of a traditional two-section passively mode-locked laser. b) 

Three-section mode-locked laser design for intra-cavity chirp compensation. A FIB etch 

creates electrical isolation between adjacent gain contacts. 

 

 

a) 

b) 
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          A schematic representation of the traditional two-section mode-locked laser and the 

proposed three-section mode-locked laser is given in Fig. 6-2. The section adjacent to the 

absorber would be biased heavily to create the negative  condition. To simplify 

determination of the threshold condition, the remaining section would need to be biased to 

transparency. This section looks like passive waveguide to the optical mode. The third 

section will be reverse biased to create the saturable absorber. Proper design of the three-

section cavity geometry requires experimental data of the modal gain and loss profiles. 

This data was collected on the 788 series devices via the segmented contact method 

(chapter 3). Initially, the electrical isolation between adjacent gain sections can be created 

with a Focused Ion Beam (FIB) etch. Ultimately proton implantation would create a higher 

resistance between the adjacent gain sections as it would eliminate the current path though 

the p-type AlGaAs layer. The following expression for the threshold condition is used to 

determine the appropriate length of the two gain sections: 

 

     miogmiogmioa JgLJgLaL   )'(')(
  
(6-2) 

 

where La is the absorber section length, Lg is the length of the heavily biased gain section 

and Lg' is the length of the gain section that his biased to transparency. ao is the unsaturated 

absorption, i is the internal cavity loss, m is the mirror loss and go(J) is the modal gain at 

current density J. By definition the losses equal the gain at transparency and thus the Lg' 

term drops out. Rearranging Eqn. (6-2), the following expression is formed: 
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c. Proof of Concept Demonstration 

          Eqn. (6-3) is used to determine the length of the heavily biased section. A proof of 

concept experiment has been performed on a two-section mode-locked laser having a 1.6-

mm saturable absorber (ZLG788 AH16). Using the modal gain and absorption data from 

chapter 3, the calculated length of Lg is 1.4-mm. Jsat is approximately 1300 A/cm2, and the 

width of the waveguide is 5 m. Accordingly, a forward injection current of 91 mA must 

be applied to this section. Transparency current density is equal to 100 A/cm2 at T=20 oC 

thus the Lg' section, which has a length of 5-mm must be biased at 25 mA. In accordance 

with the calculations from Eqn. (6-3), a 5-mm section was electrically isolated from a 1.4-

mm section via a FIB etch in the La=1.6-mm device, An SEM image of the cut is shown in 

Fig. 6-3. The gold metallization layer was completely removed; however, current can still 

pass through the p-type AlGaAs cladding layer. Accordingly electrical DC resistance was 

only measured to be about 90 . Never-the-less differential pumping of the adjacent gain 

sections could still be performed on this device. 

 

          Preliminary Frequency Resolved Optical Gating (FROG) measurements were 

captured on the three-section device to verify operability (there was some concern about 

the effect of Ga incorporation after the FIB), and to see if pulse narrowing could be 

observed. In Fig. 6-4 the recovered temporal intensity, phase and chirp are shown for the 

three-section device under a 264 A/cm2 uniform bias Fig. 6-4(a, b), and under differential 
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pumping Fig. 6-4(c, d). In the differential bias method, the short 1.4-mm section adjacent 

to the absorber was pumped heavily at (438 A/cm2), while the longer 5-mm section was 

pumped near transparency (120 A/cm2). These measurements were performed at T=20 oC 

and 0 V reverse bias on the absorber. From Fig. 6-4, improved pulse characteristics were 

noted. Namely, the differential pumping method had reduced the optical pulse width from 

7.71 ps to 5.56 ps. However, the time-bandwidth product had increased from 2.28 in the 

uniform bias condition, up to 2.76 in the differential pumping condition. It follows that the 

3-dB with of the optical spectrum must have increased in the latter case perhaps due to 

spectral broadening in the heavily biased section. It is noted that the onset of mode-locking 

occurred at a lower than expected current density. This could be the result of incomplete 

isolation of the adjacent gain sections, or there may have been some cavity losses that were 

overestimated.  

 

          The potential for narrow pulse generation through differential pumping has been 

previously examined [14, 15]. In one case a multi-section device was biased in such a way 

that the laser cavity contained a length of passive waveguide. Reduction in the optical pulse 

width by as much as 22% was demonstrated with this biasing scheme. The improved 

characteristics were attributed to an increase in the saturation power of the gain section by 

running in stronger inversion [15]. A more detailed investigation is required to determine 

if the observed narrowing of the optical pulse width demonstrated here is the result of intra-

cavity dispersion compensation, or arises from effects similar to those in [15]. Never-the-

less these results serve as a valuable first step in the demonstration of the intra-cavity chirp 

compensation concept. 
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          As a next step, it would be useful to create stronger electrical resistance between 

adjacent gain sections. This could be accomplished with a proton implantation which has 

been measured to have a resistance of approximately 8 M. Furthermore, the calculations 

of the three-section cavity geometry should take into consideration different cavity losses 

associated with different devices. By this it is meant that the internal loss in the 1.2-mm 

device of 788A might be different than the internal loss of the 1.2-mm device in 788B. If 

there is no means to measure the internal loss directly, an arbitrary correction factor, ', 

should be included in Eqn. (6-2) and used to determine the cavity geometry. ' can quickly 

be derived by comparing the measured threshold current density, to the calculated threshold 

current density from on the modal gain and absorption data. This being considered, the 

three section cavity geometry has been derived for the device having La=1.2-mm 

(ZLG788B AH09). The resulting lengths of the heavily biased section and the transparency 

biased sections are Lg=1.2-mm and Lg' = 5.6-mm, respectively. The appropriate forward 

injection currents are J=78 mA and J'=28 mA. It would be worthwhile to compare FROG 

measurements from this device under uniform bias and differential bias conditions.       
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Figure 6-3. SEM image of the Focused Ion Beam (FIB) etch in the La=1.6-mm two section 

quantum dot mode-locked laser. Approximately 90  of resistance was measured between 

adjacent gain sections. High electrical isolation was not achieved because current can still 

pass through the p-type AlGaAs layer.  
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Figure 6-4. Retrieved time-domain pulse characteristics as measured by FROG on the 

three-section mode-locked laser at T=20 oC with 0 V applied to the saturable absorber. 

(a,b) Temporal intensity, phase and chirp under uniform bias and (c,d) differential 

pumping.  

 

 

  

a) b) 

d) c) 
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APPENDIX A 

Complete Modal Gain Data as a function of current density and Temperature 

 

 Figure legend for the modal gain data shown in this appendix 
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APPENDIX B 

Complete Modal Absorption data as a function of reverse voltage and temperature 
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APPENDIX C 

Mode-locked operational maps for saturable absorber voltages of -1 to -7 V 
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APPENDIX D 

Measured temperature dependent optical spectra for the devices having La=1.0-mm, 

La=1.2-mm, La=1.4-mm and La=1.6-mm 
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